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What Is the Simscape Language?
The Simscape language extends the Simscape modeling environment by enabling you to create new
components that do not exist in the Foundation library or in any of the add-on products. It is a
dedicated textual language for modeling physical systems and has the following characteristics:

• Based on the MATLAB® programming language
• Contains additional constructs specific to physical modeling

The Simscape language makes modeling physical systems easier and more intuitive. It lets you define
custom components as textual files, complete with parameterization, physical connections, and
equations represented as acausal implicit differential algebraic equations (DAEs). The components
you create can reuse the physical domain definitions provided with Simscape to ensure that your
components are compatible with the standard Simscape components. You can also add your own
physical domains. You can automatically build and manage block libraries of your Simscape
components, enabling you to share these models across your organization.

See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3

More About
• “Typical Simscape Language Tasks” on page 1-6
• “Simscape File Types and Structure” on page 1-8
• “Creating Custom Components” on page 1-13
• “When to Define a New Physical Domain” on page 1-11
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Model Linear Resistor in Simscape Language
Let us discuss how modeling in Simscape language works, using a linear resistor as an example.

A linear resistor is a simple electrical component, described by the following equation:

V = I · R

where

V Voltage across the resistor
I Current through the resistor
R Resistance

A Simscape file that implements such a linear resistor might look as follows:
component my_resistor
% Linear Resistor
% The voltage-current (V-I) relationship for a linear resistor is V=I*R,
% where R is the constant resistance in ohms.
%
% The positive and negative terminals of the resistor are denoted by the
% + and - signs respectively.

  nodes
    p = foundation.electrical.electrical; % +:left
    n = foundation.electrical.electrical; % -:right
  end
  variables
    i = { 0, 'A' };     % Current
    v = { 0, 'V' };     % Voltage
  end
  parameters
    R = { 1, 'Ohm' };   % Resistance
  end

  branches
    i : p.i -> n.i;
  end

  equations
    assert(R>0)
    v == p.v - n.v;
    v == i*R;
  end

end

Let us examine the structure of the Simscape file my_resistor.ssc.

The first line indicates that this is a component file, and the component name is my_resistor.

Following this line, there are optional comments that customize the block name and provide a short
description in the block dialog box. Comments start with the % character.

The next section of the Simscape file is the declaration section. For the linear resistor, it declares:

• Two electrical nodes, p and n (for + and – terminals, respectively).
• Through and Across variables, current i and voltage v, to be connected to the electrical domain

Through and Across variables later in the file. You connect the component and domain variables
by specifying the connection between the component variables and nodes.
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All the public component variables appear on the Variables tab of the dialog box of the block
generated from the component file. To specify how the name of the variable appears in the dialog
box, use the comment immediately following the variable declaration (Current and Voltage).

• Parameter R, with a default value of 1 Ohm, specifying the resistance value. This parameter
appears in the dialog box of the block generated from the component file, and can be modified
when building and simulating a model. The comment immediately following the parameter
declaration, Resistance, specifies how the name of the block parameter appears in the dialog
box.

The branches section establishes the relationship between the component Through variable and the
component nodes (and therefore the domain Through variable). The i : p.i -> n.i statement
indicates that the current through the resistor flows from node p to node n.

The final section contains the equations:

• The assert construct performs parameter validation, by checking that the resistance value is
greater than zero. If the block parameter is set incorrectly, the assert triggers a run-time error.

• The first equation, v == p.v - n.v, establishes the relationship between the component Across
variable and the component nodes (and therefore the domain Across variable). It defines the
voltage across the resistor as the difference between the node voltages.

• The second equation, v == i*R, describes the operation of a linear resistor based on Ohm’s law.
It defines the mathematical relationship between the component Through and Across variables,
current i and voltage v, and the parameter R.

The == operand used in these equations specifies continuous mathematical equality between the
left- and right-hand side expressions. This means that the equation does not represent assignment
but rather a symmetric mathematical relationship between the left- and right-hand operands. This
equation is evaluated continuously throughout the simulation.

The following illustration shows the resulting custom block, generated from this component file.
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To learn more about writing Simscape files and converting your textual components into custom
Simscape blocks, refer to the following table.

For... See...
Declaration semantics, rules, and examples “Declaring Domains and Components” on page 2-

3
Detailed information on writing component
equations

“Defining Component Equations” on page 2-26

Annotating the component file to improve the
generated block cosmetics and usability

“Customizing the Block Name and Appearance”
on page 4-33

Generating Simscape blocks from component files “Generating Custom Blocks from Simscape
Component Files” on page 4-2

See Also

Related Examples
• “Mechanical Component — Spring” on page 2-92
• “Electrical Component — Ideal Capacitor” on page 2-93
• “No-Flow Component — Voltage Sensor” on page 2-94
• “Grounding Component — Electrical Reference” on page 2-95
• “Composite Component — DC Motor” on page 2-97

More About
• “What Is the Simscape Language?” on page 1-2
• “Simscape File Types and Structure” on page 1-8
• “Creating Custom Components” on page 1-13
• “When to Define a New Physical Domain” on page 1-11
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Typical Simscape Language Tasks
Simscape block libraries contain a comprehensive selection of blocks that represent engineering
components such as valves, resistors, springs, and so on. These prebuilt blocks, however, may not be
sufficient to address your particular engineering needs. When you need to extend the existing block
libraries, use the Simscape language to define customized components, or even new physical
domains, as textual files. Then convert your textual components into libraries of additional Simscape
blocks that you can use in your model diagrams.

The following table lists typical tasks along with links to background information and examples.

Task Background Information Examples
Create a custom component model
based on equations

“Creating Custom Components” on
page 1-13

“Declaring Domains and
Components” on page 2-3

“Defining Component Equations” on
page 2-26

“Declare a Spring Component” on
page 2-21

“Mechanical Component — Spring”
on page 2-92

“Electrical Component — Ideal
Capacitor” on page 2-93

“No-Flow Component — Voltage
Sensor” on page 2-94

“Grounding Component — Electrical
Reference” on page 2-95

Create a custom component model
constructed of other components

“About Composite Components” on
page 2-60

“Declaring Member Components”
on page 2-61

“Parameterizing Composite
Components” on page 2-62

“Specifying Component
Connections” on page 2-66

“Composite Component — DC
Motor” on page 2-97

Generate a custom block from a
Simscape component file

“Selecting Component File Directly
from Block” on page 4-3

“Customizing the Block Name and
Appearance” on page 4-33

“Deploy a Component File in Block
Diagram” on page 4-5

“Customize Block Display” on page
4-45
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Task Background Information Examples
Add a custom block library to
Simscape libraries

“Building Custom Block Libraries”
on page 4-25

“Using Source Protection for
Simscape Files” on page 4-26

“Customizing the Library Name and
Appearance” on page 4-29

“Customizing the Block Name and
Appearance” on page 4-33

“Create a Custom Block Library” on
page 4-31

“Customize Block Display” on page
4-45

Define a new domain, with
associated Through and Across
variables, and then use it in custom
components

“When to Define a New Physical
Domain” on page 1-11

“Declaring Domains and
Components” on page 2-3

“Declare a Mechanical Rotational
Domain” on page 2-20

“Propagation of Domain
Parameters” on page 2-100

Create a component that supplies
domain-wide parameters (such as
fluid temperature) to the rest of the
model

“Working with Domain Parameters”
on page 2-100

“Custom Library with Propagation
of Domain Parameters” on page 2-
102
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Simscape File Types and Structure

In this section...
“Simscape File Type” on page 1-8
“File and Model Types” on page 1-8
“Model File Structure” on page 1-9

Simscape File Type
The Simscape file is a dedicated file type in the MATLAB environment. It has the extension .ssc.

The Simscape file contains language constructs that do not exist in MATLAB. They are specific to
modeling physical objects. However, the Simscape file incorporates the basic MATLAB programming
syntax at the lowest level.

Simscape files must reside in a +package directory on the MATLAB path:

• directory_on_the_path/+MyPackage/MyComponent.ssc
• directory_on_the_path/+MyPackage/+Subpackage/.../MyComponent.ssc

For more information on packaging your Simscape files, see “Organizing Your Simscape Files” on
page 4-25.

File and Model Types
There are two types of Simscape files that correspond to the two model types:

• Domain models describe the physical domains through which component models exchange energy
and data. These physical domains correspond to port types, for example, translational, rotational,
hydraulic, and so on.

• Component models describe the physical components that you want to model, that is, they
correspond to Simscape blocks.

For example, to implement a variable area hydraulic orifice that is different from the one in the
Simscape Foundation library, you can create a component model, MyVarOrifice.ssc, based on the
standard hydraulic domain included in the Foundation library. However, to implement a simple
thermohydraulic orifice, you can create a domain model first, t_hyd.ssc (a custom hydraulic domain
that accounts for fluid temperature), and then create the component model that references it,
MyThhOrifice.ssc, as well as all the other component models based on this custom domain and
needed for modeling thermohydraulic systems. For an example, see “Custom Library with
Propagation of Domain Parameters” on page 2-102.

The third file type, function files, represents Simscape functions. Simscape functions model a class of
pure first-order mathematical functions with explicit input-output relationship. Their purpose is to
reuse expressions in equations and member declarations of multiple components.
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Model File Structure
Each model is defined in its own file of the same name with a .ssc extension. For example,
MyComponent is defined in MyComponent.ssc. A model may be a domain model or a component
model. Each Simscape file starts with a line specifying the model class and identifier:

ModelClass Identifier

where

• ModelClass is either domain or component
• Identifier is the name of the model

For example:

domain rotational

or

component spring

A Simscape file splits the model description into the following pieces:

• Interface or Declaration — Declarative section similar to the MATLAB class system declarations:

• For domain models, declares variables (Across and Through) and parameters
• For component models, declares nodes, inputs and outputs, parameters, and variables

• Implementation (only for component models) — Describes run-time functionality of the model.
Implementation consists of the following sections:

• Structure — For composite components, describes how the constituent components' ports are
connected to one another and to the external inputs, outputs, and nodes of the top-level
component. Executed once for each instance of the component in the top-level model during
model compilation.

• Equation — For behavioral components, describes underlying equations. Executed throughout
simulation.

• Events — For discrete event modeling, lets you perform discrete changes on continuous
variables. Executed throughout simulation.

Like the MATLAB class system, these constructs and functions act on a specific instance of the class.
Unlike the MATLAB class system, the object is not passed as the first argument to function. This
reduces syntax with no loss of functionality.

See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3

More About
• “What Is the Simscape Language?” on page 1-2
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• “Typical Simscape Language Tasks” on page 1-6
• “Creating Custom Components” on page 1-13
• “When to Define a New Physical Domain” on page 1-11
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When to Define a New Physical Domain
A physical domain provides an environment, defined primarily by its Across and Through variables,
for connecting the components in a Physical Network. Component nodes are typed by domain, that is,
each component node is associated with a unique type of domain and can be connected only to nodes
associated with the same domain.

You do not need to define a new physical domain to create custom components. Simscape software
comes with several predefined domains, such as mechanical translational, mechanical rotational,
electrical, hydraulic, and so on. These domains are included in the Foundation library, and are the
basis of Simscape Foundation blocks, as well as those in Simscape add-on products (for example,
Simscape Fluids™ or Simscape Electrical™ blocks). If you want to create a custom component to be
connected to the standard Simscape blocks, use the Foundation domain definitions. For a complete
listing of the Foundation domains, see “Foundation Domain Types and Directory Structure” on page
6-2.

You need to define a new domain only if the Foundation domain definitions do not satisfy your
modeling requirements. For example, to enable modeling electrochemical systems, you need to create
a new domain with the appropriate Across and Through variables. If you need to model a simple
thermal hydraulic system, you can create a custom hydraulic domain that accounts for fluid
temperature by supplying a domain-wide parameter (for an example, see “Propagation of Domain
Parameters” on page 2-100).

Once you define a custom physical domain, you can use it for defining nodes in your custom
components. These nodes, however, can be connected only to other nodes of the same domain type.
For example, if you define a custom hydraulic domain as described above and then use it when
creating custom components, you will not be able to connect these nodes with the regular hydraulic
ports of the standard Simscape blocks, which use the Foundation hydraulic domain definition.

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
• “How to Define a New Physical Domain” on page 1-12
• “Declare a Mechanical Rotational Domain” on page 2-20
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How to Define a New Physical Domain
To define a new physical domain, you must declare the Through and Across variables associated with
it. For more information, see “Basic Principles of Modeling Physical Networks” in the Simscape
User's Guide.

A domain file must begin with the domain keyword, followed by the domain name, and be terminated
by the end keyword.

Domain files contain only the declaration section. Two declaration blocks are required:

• The Across variables declaration block, which begins with the variables keyword and is
terminated by the end keyword. It contains declarations for all the Across variables associated
with the domain. A domain model class definition can contain multiple Across variables, combined
in a single variables block.

• The Through variables declaration block, which begins with the variables(Balancing =
true) keyword and is terminated by the end keyword. It contains declarations for all the Through
variables associated with the domain. A domain model class definition can contain multiple
Through variables, combined in a single variables(Balancing = true) block.

For more information on declaring the Through and Across variables, see “Declare Through and
Across Variables for a Domain” on page 2-6.

The parameters declaration block is optional. If present, it must begin with the parameters keyword
and be terminated by the end keyword. This block contains declarations for domain parameters.
These parameters are associated with the domain and can be propagated through the network to all
components connected to the domain. For more information, see “Working with Domain Parameters”
on page 2-100.

For an example of a domain file, see “Declare a Mechanical Rotational Domain” on page 2-20.

See Also

Related Examples
• “Declare a Mechanical Rotational Domain” on page 2-20
• “Declare Through and Across Variables for a Domain” on page 2-6

More About
• “When to Define a New Physical Domain” on page 1-11
• “Working with Domain Parameters” on page 2-100
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Creating Custom Components
In this section...
“Component Types and Prerequisites” on page 1-13
“How to Create a New Component” on page 1-13
“Generating a Custom Block from a Component File” on page 1-14
“Adding a Custom Block Library” on page 1-14

Component Types and Prerequisites
In physical modeling, there are two types of models:

• Behavioral — A model that is implemented based on its physical behavior, described by a system
of mathematical equations. An example of a behavioral block implementation is the Variable
Orifice block.

• Composite — A model that is constructed out of other blocks, connected in a certain way. An
example of a composite, or structural, block implementation is the 4-Way Directional Valve block
(available with Simscape Fluids Isothermal block libraries), which is constructed based on four
Variable Orifice blocks.

Simscape language lets you create new behavioral and composite models when your design
requirements are not satisfied by the libraries of standard blocks provided with Simscape and its add-
on products.

A prerequisite to creating components is having the appropriate domains for the component nodes.
You can use Simscape Foundation domains or create your own, as described in “How to Define a New
Physical Domain” on page 1-12.

How to Create a New Component
To create a new custom component, define a component model class by writing a component file.

A component file must begin with the component keyword, followed by the component name, and be
terminated by the end keyword.

Component files may contain the following sections, appearing in any order:

• Declaration — Contains all the member class declarations for the component, such as parameters,
variables, nodes, inputs, and outputs. Each member class declaration is a separate declaration
block, which begins with the appropriate keyword (corresponding to the member class) and is
terminated by the end keyword. For more information, see the component-related sections and
links in “Declaring Domains and Components” on page 2-3.

• Branches — Establishes the relationship between the component variables and nodes. This
relationship connects the Through and Across variables declared inside the component to the
domain Through and Across variables. For more information, see “Define Relationship Between
Component Variables and Nodes” on page 2-23.

• Structure — Declares the component connections for composite models. For more information, see
“Specifying Component Connections” on page 2-66.
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• Equation — Declares the component equations for behavioral models. These equations may be
conditional, and are applied throughout the simulation. For more information, see “Defining
Component Equations” on page 2-26.

• Events — Manages the event updates. Event modeling lets you perform discrete changes on
continuous variables. For more information, see “Discrete Event Modeling” on page 2-54.

• Annotations — Lets you provide annotations in a component file that control various cosmetic
aspects of a Simscape block generated from this component. See annotations for more
information.

Generating a Custom Block from a Component File
After you have created a textual component file, you can deploy it directly into a block diagram using
the workflows described in “Selecting Component File Directly from Block” on page 4-3. You can
control the block name and appearance by using optional comments in the component file. For more
information, see “Customizing the Block Name and Appearance” on page 4-33.

Adding a Custom Block Library
Adding a custom block library involves creating new components that model the desired physical
behavior and structure. It may involve creating a new physical domain if the Simscape Foundation
domain definitions do not satisfy your modeling requirements.

After you have created the textual component files, convert them into a library of blocks using the
procedure described in “Building Custom Block Libraries” on page 4-25. You can control the block
names and appearance by using optional comments in the component file. For more information, see
“Customizing the Block Name and Appearance” on page 4-33.

See Also

Related Examples
• “Mechanical Component — Spring” on page 2-92
• “Electrical Component — Ideal Capacitor” on page 2-93
• “No-Flow Component — Voltage Sensor” on page 2-94
• “Grounding Component — Electrical Reference” on page 2-95
• “Composite Component — DC Motor” on page 2-97

More About
• “What Is the Simscape Language?” on page 1-2
• “Typical Simscape Language Tasks” on page 1-6
• “Declaring Domains and Components” on page 2-3
• “Defining Component Equations” on page 2-26
• “About Composite Components” on page 2-60
• “Building Custom Block Libraries” on page 4-25

1 Simscape Language Fundamentals

1-14



Creating Custom Components and
Domains

• “Declaring Domains and Components” on page 2-3
• “Declare Through and Across Variables for a Domain” on page 2-6
• “Declare Component Variables” on page 2-8
• “Declare Component Parameters” on page 2-13
• “Declare Component Nodes” on page 2-16
• “Declare Component Inputs and Outputs” on page 2-18
• “Declare a Mechanical Rotational Domain” on page 2-20
• “Declare a Spring Component” on page 2-21
• “Define Relationship Between Component Variables and Nodes” on page 2-23
• “Defining Component Equations” on page 2-26
• “Simple Algebraic System” on page 2-31
• “Use Simulation Time in Equations” on page 2-32
• “Initial Equations” on page 2-33
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Intermediate Terms in Equations” on page 2-37
• “Using Lookup Tables in Equations” on page 2-48
• “Programming Run-Time Errors and Warnings” on page 2-50
• “Import Symbolic Math Toolbox Equations” on page 2-52
• “Discrete Event Modeling” on page 2-54
• “Triggered Delay Component” on page 2-57
• “Enabled Component” on page 2-58
• “About Composite Components” on page 2-60
• “Declaring Member Components” on page 2-61
• “Parameterizing Composite Components” on page 2-62
• “Specifying Initial Target Values for Member Variables” on page 2-64
• “Specifying Component Connections” on page 2-66
• “Converting Subsystems into Composite Components” on page 2-72
• “Defining Component Variants” on page 2-77
• “Defining Conditional Visibility of Component Members” on page 2-83
• “Component Variants — Series RLC Branch” on page 2-85
• “Component Variants — Thermal Resistor” on page 2-87
• “Mechanical Component — Spring” on page 2-92
• “Electrical Component — Ideal Capacitor” on page 2-93
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• “No-Flow Component — Voltage Sensor” on page 2-94
• “Grounding Component — Electrical Reference” on page 2-95
• “Composite Component — DC Motor” on page 2-97
• “Working with Domain Parameters” on page 2-100
• “Attribute Lists” on page 2-105
• “Subclassing and Inheritance” on page 2-108
• “Importing Domain and Component Classes” on page 2-111
• “Composite Component Using import Statements” on page 2-113
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Declaring Domains and Components
In this section...
“Declaration Section Purpose” on page 2-3
“Definitions” on page 2-3
“Member Declarations” on page 2-3
“Member Summary” on page 2-4
“Declaring a Member as a Value with Unit” on page 2-5

Declaration Section Purpose
Both domain and component files contain a declaration section:

• The declaration section of a domain file is where you define the Through and Across variables for
the domain. You can also define the domain-wide parameters, if needed.

• The declaration section of a component file is where you define all the variables, parameters,
nodes, inputs, and outputs that you need to describe the connections and behavior of the
component. These are called member declarations.

In order to use a variable, parameter, and so on, in other sections of a component file (such as
branches, equations, and so on), you have to first define it in the declaration section.

Definitions
The declaration section of a Simscape file may contain one or more member declarations.

Term Definition
Member • A member is a piece of a model’s declaration. The collection of all members

of a model is its declaration.
• It has an associated data type and identifier.
• Each member is associated with a unique member class. Additionally,

members may have some specific attributes.
Member class • A member class is the broader classification of a member.

• The following is the set of member classes: variables (domain or
component variables), parameters, inputs, outputs, nodes,
components. The components member class, not to be confused with the
component model class, is discussed in “Declaring Member Components”
on page 2-61.

• Two members may have the same type, but be of different member classes.
For example, a parameter and an input may have the same data type, but
because they are of different member classes, they behave differently.

Member Declarations
The following rules apply to declaring members:
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• Like the MATLAB class system, declared members appear in a declaration block:

<ModelClass> <Identifier>
   <MemberClass>
      % members here
   end
   ...
end

• Unlike the MATLAB class system, <MemberClass> may take on any of the available member
classes and dictates the member class of the members defined within the block.

• Like the MATLAB class system, each declared member is associated with a MATLAB identifier,
<Identifier>. Unlike the MATLAB class system, members must be declared with a right-hand
side value.

<ModelClass> <Identifier>
   <MemberClass>
      <Identifier> = <Expression>;
      % more members
   end
   ...
end

• <Expression> on the right-hand side of the equal sign (=) is a MATLAB expression. It could be a
constant expression, or a call to a MATLAB function.

• The MATLAB class of the expression is restricted by the class of the member being declared. Also,
the data type of the expression dictates data type of the declared member.

Member Summary
The following table provides the summary of member classes.

Member Class Applicable Model
Classes

MATLAB Class of
Expression

Expression Meaning Writable

parameters domain
component

Numerical value with unit
on page 2-5

Default value Yes

variables domain
component

Numerical value with unit
on page 2-5

Nominal value and
default initial condition

Yes

inputs component Scalar, vector, or matrix
double value with unit on
page 2-5, or untyped

Default value, if typed No

outputs component Scalar, vector, or matrix
double value with unit on
page 2-5, or untyped

Default value, if typed No

nodes component Instance of a node
associated with a domain

Type of domain No

components component Instance of a component
class

Member component
included in a composite
model (see “Declaring
Member Components”
on page 2-61)

No
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Declaring a Member as a Value with Unit
In Simscape language, declaration members such as parameters, variables, inputs, and outputs, are
represented as a value with associated unit. The syntax for a value with unit is essentially that of a
two-member value-unit cell array:

 { value , 'unit' }

where value is a real matrix, including a scalar, and unit is a valid unit string, defined in the unit
registry, or 1 (unitless). Depending on the member type, certain restrictions may apply. See
respective reference pages for details.

For example, this is how you declare a parameter as a value with unit:

par1 = { value , 'unit' };

As in MATLAB, the comma is not required, and this syntax is equivalent:

 par1 = { value 'unit' };

To declare a unitless parameter, you can either use the same syntax:

 par1 = { value , '1' };

or omit the unit and use this syntax:

 par1 = value;

Internally, however, this parameter will be treated as a two-member value-unit cell array { value ,
'1' }.

See Also

Related Examples
• “Declare a Spring Component” on page 2-21
• “Declare a Mechanical Rotational Domain” on page 2-20
• “Declare Through and Across Variables for a Domain” on page 2-6
• “Declare Component Variables” on page 2-8
• “Declare Component Parameters” on page 2-13
• “Declaring Domain Parameters” on page 2-100
• “Declare Component Nodes” on page 2-16
• “Declare Component Inputs and Outputs” on page 2-18
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Declare Through and Across Variables for a Domain
In a domain file, you have to declare the Through and Across variables associated with the domain.
These variables characterize the energy flow and usually come in pairs, one Through and one Across.
Simscape language does not require that you have the same number of Through and Across variables
in a domain definition, but it is highly recommended. For more information, see “Basic Principles of
Modeling Physical Networks”.

variables begins an Across variables declaration block, which is terminated by an end key word.
This block contains declarations for all the Across variables associated with the domain. A domain
model class definition can contain multiple Across variables, combined in a single variables block.
This block is required.

Each variable is defined as a value with unit on page 2-5:

variables
    domain_across_var1 = {value,'unit'};
end

value is the initial value. unit is a valid unit string, defined in the unit registry. See “Declare a
Mechanical Rotational Domain” on page 2-20 for more information.

You can specify initialization ranges for domain Across variables, for example, to exclude negative
values for pressure or temperature. The syntax is the same as for component variables:

variables
    domain_across_var1 = {value={value,'unit'},imin={value,'unit'},imax={value,'unit'}};
end

For more information, see “Variable Initialization Range” on page 2-10.

Through variables are semantically distinct in that their values have to balance at a node: for each
Through variable, the sum of all its values flowing into a branch point equals the sum of all its values
flowing out. Therefore, a domain file must contain a separate declaration block for its Through
variables, with the Balancing attribute set to true.

variables(Balancing = true) begins a Through variables definition block, which is terminated
by an end key word. This block contains declarations for all the Through variables associated with
the domain. A domain model class definition can contain multiple Through variables, combined in a
single variables(Balancing = true) block. This block is required.

variables(Balancing = true)
    domain_through_var1 = {value,'unit'};
end

See Also

Related Examples
• “Declare a Mechanical Rotational Domain” on page 2-20
• “Declare Component Variables” on page 2-8
• “Declare Component Nodes” on page 2-16
• “Declaring Domain Parameters” on page 2-100
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More About
• “Declaring Domains and Components” on page 2-3
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Declare Component Variables

In this section...
“Through and Across Component Variables” on page 2-8
“Internal Component Variables” on page 2-8
“Variable Priority for Model Initialization” on page 2-9
“Variable Initialization Range” on page 2-10
“Nominal Value and Unit for a Variable” on page 2-10

Through and Across Component Variables
When you declare Through and Across variables in a component, you are essentially creating
instances of domain Through and Across variables. You declare a component variable as a value with
unit on page 2-5 by specifying an initial value and units commensurate with units of the domain
variable.

The following example initializes the Through variable t (torque) as 0 N*m:

variables
    t = {0,'N*m'};
end

Note After you declare component Through and Across variables, you have to specify their
relationship with component nodes, and therefore with the domain Through and Across variables. For
more information, see “Define Relationship Between Component Variables and Nodes” on page 2-23.

Internal Component Variables
You can also declare an internal component variable as a value with unit on page 2-5. You can use
such internal variables throughout the component file, for example, in the equations section or in
the intermediate term declarations. Component variables are also used in the model initialization
process, as described in “Variable Priority for Model Initialization” on page 2-9.

The following example declares and initializes three variables:

variables
    f = {0,'N'};   % Force
    v = {0,'m/s'}; % Velocity
    x = {0,'m'};   % Spring deformation
end

Force and velocity are the component Through and Across variables, later to be connected to the
domain Through and Across variables using the branches section. Spring deformation is an internal
component variable, to be used for model initialization.

You can declare internal component variables of type integer or real as event variables by setting the
Event=true attribute. For more information, see “Event Variables” on page 2-54.
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Variable Priority for Model Initialization
When you generate a custom Simscape block from a component file, the Variables tab of this block
will list all the public variables specified in the underlying component file, along with the initialization
priority, target initial value, and unit of each variable. The block user can change the variable priority
and target, prior to simulation, to affect the model initialization. For more information, see “Variable
Initialization”.

The default values for variable priority, target value, and unit come from the variable declaration in
the component file. Specifying an optional comment lets you control the variable name in the block
dialog box. For more information, see “Specify Meaningful Names for the Block Parameters and
Variables” on page 4-36.

Note For variables with temperature units, there is an additional consideration of whether to apply
linear or affine conversion when the block user changes the unit in the Variables tab of the block
dialog box. Use the Conversion attribute in the same way as for the block parameters. For details,
see “Parameter Units” on page 2-13.

In most cases, it is sufficient to declare a variable just as a value with unit on page 2-5, omitting its
priority, which is equivalent to priority = priority.none. The block user can set the variable
priority, as needed, in the Variables tab of the block dialog box prior to simulation.

In some cases, however, setting a variable to a certain priority by default is essential to the correct
operation of the component. To specify a high or low default priority for a component variable,
declare the variable as a field array. For example, the following declaration initializes variable x
(spring deformation) as 0 mm, with high priority:
variables
    x = {value = {0,'m'},priority = priority.high}; % Spring deformation
end

In this case, the Spring deformation variable will appear in the Variables tab of the block dialog
box with the default priority High and the default target value and unit 0 mm, but the block user can
change the variable priority and target as usual.

If you want a variable to always have high initialization priority, without letting the block user to
change it, declare the variable as private:

variables(Access=private)
  x = {value = {0,'m'},priority = priority.high};
end

In this case, the block user does not have control over the variable priority or initialization target,
because private variables do not appear in the Variables tab of the block dialog box.

If you want the variable to always have a certain initialization priority, such as High, but let the block
user specify the target value, declare the variable as private and tie it to an initialization parameter:

parameters
  p = {0,'m'}; % Initial deformation
end
variables(Access=private)
  x = {value = p,priority = priority.high}; 
end
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In this case, the value of the Initial deformation parameter, specified by the block user, is assigned
as the initial target to variable x, with high initialization priority. Depending on the results of the
solve, this target may or may not be satisfied when the solver computes the initial conditions for
simulation. For more information, see “Initial Conditions Computation”.

For composite components, member components are declared as hidden and therefore their variables
do not appear in the Variables tab of the block dialog box. However, you can use a top-level
parameter to let the block user specify the initial target value of a member component variable. For
more information, see “Specifying Initial Target Values for Member Variables” on page 2-64.

Variable Initialization Range
When declaring a variable, you can specify the minimum and maximum acceptable values for its
initialization, for example:

variables
  x = {value={0,'deg'},priority=priority.high,imin={0,'deg'},imax={360,'deg'}};
end

When multiple initialization solutions exist, this syntax lets you guide the solver towards the
preferred solution. For more information, see “Block-Level Variable Initialization”. If the specified
range cannot be satisfied during initialization, the solver issues an error.

The solver tries to satisfy the initialization range for a variable regardless of whether its initialization
priority is high, low, or none. It is recommended that you use the priority attribute sparingly. The
default priority value, priority.none (which is equivalent to leaving out the priority attribute
entirely), is suitable in most cases. The block user can modify the variable priority value, as needed,
in the Variables tab of the block dialog box prior to simulation. However, the block user does not
have control over the variable initialization range. Only the block author can specify the acceptable
minimum and maximum values for variable initialization in the component file, both for continuous
and for event variables.

The default initialization range is (-inf,inf). Therefore, you do not have to specify both values to
define the range, it is sufficient to specify only imin or imax. For example, use this syntax to limit the
temperature to positive values:

variables
  T = {value={293.15,'K'},imin={0,'K'}};
end

When you specify imin or imax, these values define an open range.

For model initialization using an operating point, the solver tries to satisfy initialization ranges only
for variables that do not have a target in the operating point data tree. For more information, see
“Using Operating Point Data for Model Initialization”.

Nominal Value and Unit for a Variable
Nominal values provide a way to specify the expected magnitude of a variable in a model, similar to
specifying a transformer rating, or setting a range on a voltmeter. For more information, see “System
Scaling by Nominal Values”.

Each model has an underlying table of nominal value-unit pairs. In general, all variables in a model
are scaled based on the nominal value corresponding to their physical unit. You can override this

2 Creating Custom Components and Domains

2-10



scaling for an individual variable in a component file by providing a nominal value and unit as a
variable declaration attribute.

variables
    x = {value = {value,'unit'},nominal = {value,'unit'}}; 
end

When you generate a custom Simscape block from a component file, nominal value and unit form the
nominal declaration attribute translate into default values for block parameters x_nominal and
x_nominal_unit (where x is the variable name).

For example, this variable declaration:

variables
    i = {value = {0,'A'},nominal = {1,'mA'}}; % Current
end

produces the following default values for block parameters:

• i_nominal_value, with a value of '1'
• i_nominal_unit, with a value of 'mA'

and looks like this in the Property Inspector.

Note It is recommended that you use the nominal attribute sparingly. The default nominal values,
which come from the model value-unit table, are suitable in most cases. The block user can also
modify the nominal values and units for individual blocks by using either the Property Inspector or
set_param and get_param functions, if needed. For more information, see “Modify Nominal Values
for a Block Variable”.
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See Also

Related Examples
• “Declare a Spring Component” on page 2-21
• “Declare Through and Across Variables for a Domain” on page 2-6
• “Declare Component Parameters” on page 2-13
• “Declaring Domain Parameters” on page 2-100
• “Declare Component Nodes” on page 2-16
• “Declare Component Inputs and Outputs” on page 2-18

More About
• “Declaring Domains and Components” on page 2-3
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Declare Component Parameters
In this section...
“Parameter Units” on page 2-13
“Case Sensitivity” on page 2-13

Component parameters let you specify adjustable parameters for the Simscape block generated from
the component file. Parameters will appear in the block dialog box and can be modified when building
and simulating a model.

You declare each parameter as a value with unit on page 2-5. Specifying an optional comment lets
you control the parameter name in the block dialog box. For more information, see “Specify
Meaningful Names for the Block Parameters and Variables” on page 4-36.

The following example declares parameter k, with a default value of 10 N*m/rad, specifying the
spring rate of a rotational spring. In the block dialog box, this parameter will be named Spring rate.

parameters
    k = { 10, 'N*m/rad' };   % Spring rate
end

Parameter Units
When you declare a component parameter, use the units that make sense in the context of the block
application. For example, if you model a solenoid, it is more convenient for the block user to input
stroke in millimeters rather than in meters. When a parameter is used in equations and other sections
of a component file, Simscape unit manager handles the conversions.

With temperature units, however, there is an additional issue of whether to apply linear or affine
conversion (see “Thermal Unit Conversions”). Therefore, when you declare a parameter with
temperature units, you can specify only nonaffine units (kelvin or rankine). When the block user
enters the parameter value in affine units (Celsius or Fahrenheit), this value is automatically
converted to the units specified in the parameter declaration. By default, affine conversion is applied.
If a parameter specifies relative, rather than absolute, temperature (in other words, a change in
temperature), set its Conversion attribute to relative (for details, see “Member Attributes” on
page 2-106).

Note Member attributes apply to a whole declaration block. If some of your parameters are relative
and others are absolute, declare them in separate blocks. You can have more than one declaration
block of the same member type within a Simscape file.

Case Sensitivity
Simscape language is case-sensitive. This means that member names may differ only by case.
However, Simulink® software is not case-sensitive. Simulink parameter names (that is, parameter
names in a block dialog box) must be unique irrespective of case. Therefore, if you declare two
parameters whose names differ only by case, such as

component MyComponent 
  parameters 
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    A = 0; 
    a = 0; 
  end 
end 

you will not be able to generate a block from this component.

However, if one of the parameters is private or hidden, that is, does not appear in the block dialog
box,

component MyComponent 
  parameters(Access=private) 
    A = 0; 
  end 
  parameters 
    a = 0; 
  end 
end 

then there is no conflict in the Simulink namespace and no problem generating the block from the
component source.

Public component variables also appear in the block dialog box, on the Variables tab, because they
are used for model initialization. These variables therefore compete with each other and with the
block parameter names in the Simulink namespace. If a component has a public variable and a
parameter whose names differ only by case, such as

component MyComponent 
  variables 
    A = 0; 
  end 
  parameters 
    a = 0; 
  end 
end 

you will not be able to generate a block from this component. As a possible workaround, you can
declare the variable as private or hidden. In this case, the variable does not appear on the Variables
tab of the resulting block dialog, and therefore there is no namespace conflict. However, if you want
to be able to use the variable in the model initialization process, keep it public and change its name,
or the name of the parameter.

The case-sensitivity restriction applies only to component parameters and public component
variables, because other member types do not have an associated Simulink entity, and are therefore
completely case-sensitive.

See Also

Related Examples
• “Declare a Spring Component” on page 2-21
• “Declare Component Variables” on page 2-8
• “Declare Component Nodes” on page 2-16
• “Declare Component Inputs and Outputs” on page 2-18
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More About
• “Declaring Domains and Components” on page 2-3
• “Enumerations” on page 3-14
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Declare Component Nodes
Component nodes define the conserving ports of a Simscape block generated from the component
file. The type of the conserving port (electrical, mechanical rotational, and so on) is determined by
the type of its parent domain. The domain defines which Through and Across variables the port can
transfer. Conserving ports of Simscape blocks can be connected only to ports associated with the
same domain. For more information, see “Basic Principles of Modeling Physical Networks”.

When declaring nodes in a component, you have to associate them with an existing domain. Once a
node is associated with a domain, it:

• Carries each of the domain Across variables as a measurable quantity
• Writes a conserving equation for each of the domain Through variables

For more information, see “Define Relationship Between Component Variables and Nodes” on page 2-
23.

You need to refer to the domain name using the full path starting with the top package directory. For
more information on packaging your Simscape files, see “Building Custom Block Libraries” on page 4-
25.

The following example uses the syntax for the Simscape Foundation mechanical rotational domain:

nodes
    r = foundation.mechanical.rotational.rotational;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the domain file
rotational.ssc.

If you want to use your own customized rotational domain called rotational.ssc and located at
the top level of your custom package directory +MechanicalElements, the syntax would be:

nodes
    r = MechanicalElements.rotational;
end

Note Components using your own customized rotational domain cannot be connected with the
components using the Simscape Foundation mechanical rotational domain. Use your own customized
domain definitions to build complete libraries of components to be connected to each other.

Specifying an optional comment lets you control the port label and location in the block icon. For
more information, see “Customize the Names and Locations of the Block Ports” on page 4-38. In the
following example, the electrical conserving port will be labelled + and will be located on the top side
of the block icon.

nodes
    p = foundation.electrical.electrical; % +:top
end
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See Also

Related Examples
• “Declare a Spring Component” on page 2-21
• “Declare a Mechanical Rotational Domain” on page 2-20
• “Declare Through and Across Variables for a Domain” on page 2-6
• “Declare Component Variables” on page 2-8
• “Declare Component Parameters” on page 2-13
• “Declare Component Inputs and Outputs” on page 2-18

More About
• “Declaring Domains and Components” on page 2-3
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Declare Component Inputs and Outputs
In addition to conserving ports, Simscape blocks can contain Physical Signal input and output ports,
directional ports that carry signals with associated units. These ports are defined in the inputs and
outputs declaration blocks of a component file. Each input or output can be defined as:

• A value with unit on page 2-5, where value can be a scalar, vector, or matrix. For a vector or a
matrix, all signals have the same unit.

• An untyped identifier, to facilitate unit propagation.

Specifying an optional comment lets you control the port label and location in the block icon. For
more information, see “Customize the Names and Locations of the Block Ports” on page 4-38.

This example declares an input port s, with a default value of 1 Pa, specifying the control port of a
hydraulic pressure source. In the block diagram, this port will be named Pressure and will be located
on the top side of the block icon.

inputs
    s = { 1, 'Pa' };   % Pressure:top
end

The next example declares an output port v as a 3-by-3 matrix of linear velocities.

 outputs
   v = {zeros(3), 'm/s'}; 
 end

You can also reference component parameters in input and output declarations. For example, you can
control the signal size by using a block parameter:

component MyTransformer
     parameters 
         N = 3; % Number of windings
     end
     inputs
         I = {zeros(N, 1), 'A'}; 
     end
     ....
 end

The following example declares an input port I and output port O as untyped identifiers. In the block
diagram, the output port will be located on the right side of the block icon. The block propagates the
unit and size of the physical signal. For more information, see “Physical Signal Unit Propagation”.

 inputs
   I;
 end
 outputs
   O; % :right
 end
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See Also

Related Examples
• “Declare a Spring Component” on page 2-21
• “Declare Component Variables” on page 2-8
• “Declare Component Parameters” on page 2-13
• “Declare Component Nodes” on page 2-16

More About
• “Declaring Domains and Components” on page 2-3
• “Physical Signal Unit Propagation”
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Declare a Mechanical Rotational Domain
The following file, named rotational.ssc, declares a mechanical rotational domain, with angular
velocity as an Across variable and torque as a Through variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

  variables
    w = { 1 , 'rad/s' }; % angular velocity
  end

  variables(Balancing = true)
    t = { 1 , 'N*m' }; % torque
  end

end

Note This domain declaration corresponds to the Simscape Foundation mechanical rotational
domain. For a complete listing of the Foundation domains, see “Foundation Domain Types and
Directory Structure” on page 6-2.

In a component, each node associated with this domain will:

• Carry a measurable variable w (angular velocity)
• Conserve variable t (torque)

For more information, see “Define Relationship Between Component Variables and Nodes” on page 2-
23.

See Also

Related Examples
• “Declare Through and Across Variables for a Domain” on page 2-6
• “Declaring Domain Parameters” on page 2-100

More About
• “Declaring Domains and Components” on page 2-3

2 Creating Custom Components and Domains

2-20



Declare a Spring Component
The following diagram shows a network representation of a mass-spring-damper system, consisting of
four components (mass, spring, damper, and reference) in a mechanical rotational domain.

The domain is declared in a file named rotational.ssc (see “Declare a Mechanical Rotational
Domain” on page 2-20). The following file, named spring.ssc, declares a component called spring.
The component contains:

• Two rotational nodes, r and c (for rod and case, respectively)
• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate
• Through and Across variables, torque t and angular velocity w, later to be related to the Through

and Across variables of the rotational domain
• Internal variable theta, with a default value of 0 rad, specifying relative angle, that is,

deformation of the spring

component spring
  nodes
    r = foundation.mechanical.rotational.rotational;
    c = foundation.mechanical.rotational.rotational;
  end
  parameters
    k = { 10, 'N*m/rad' };   % spring rate
  end
  variables
    theta = { 0, 'rad' };    % introduce new variable for spring deformation
    t = { 0, 'N*m' };        % torque through
    w = { 0, 'rad/s' };      % velocity across
  end
  % branches here
  % equations here
end

Note This example shows only the declaration section of the spring component. For a complete file
listing of a spring component, see “Mechanical Component — Spring” on page 2-92.
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See Also

Related Examples
• “Declare Component Variables” on page 2-8
• “Declare Component Parameters” on page 2-13
• “Declare Component Nodes” on page 2-16
• “Declare Component Inputs and Outputs” on page 2-18

More About
• “Declaring Domains and Components” on page 2-3
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Define Relationship Between Component Variables and Nodes
In this section...
“Connecting Component Variables to the Domain” on page 2-23
“Workflow from Domain to Component” on page 2-23
“Connecting One Through and One Across Variable” on page 2-24
“Connecting Two Through and Two Across Variables” on page 2-25

Connecting Component Variables to the Domain
After you declare the component Through and Across variables on page 2-8, you need to connect
them to the domain Through and Across variables. You do this by establishing the relationship
between the component variables and its nodes, which carry the Through and Across variables for
the domain:

• To establish the relationship between the Through variables, use the branches section of the
component file. If the component has multiple nodes, indicate branches by writing multiple
statements in the branches section. For syntax and examples, see the branches on page 5-
9 reference page.

• To establish the relationship between the Across variables, use the equations section of the
component file. Add an equation that connects the component Across variable with the respective
variables at the component nodes. If there is more than one Across variable, add multiple
equations, connecting each variable with its respective nodes. The equations section can also
contain other equations that define the component action. For more information, see “Defining
Component Equations” on page 2-26.

Workflow from Domain to Component
Propagate the domain Through and Across variables into a component.

1 Declare the Across and Through variables in a domain file (or use an existing domain; for a
complete listing of the Foundation domains, see “Foundation Domain Types and Directory
Structure” on page 6-2).

For example, the following domain file, named rotational.ssc, declares angular velocity, w, as
an Across variable and torque, t, as a Through variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

  variables
    w = { 1 , 'rad/s' }; % angular velocity
  end

  variables(Balancing = true)
    t = { 1 , 'N*m' }; % torque
  end

end
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2 Declare the nodes in a component file and associate them with the domain, for example:

nodes
    node1 = MyPackage.rotational;
    node2 = MyPackage.rotational;
end

Once a node is associated with a domain, it:

• Carries each of the domain Across variables as a measurable quantity. In this example, each of
the nodes carries one Across variable, w.

• Writes a conserving equation for each of the domain Through variables. In this example, there
is one Through variable, t, and therefore each node writes one conserving equation. A
conserving equation is a sum of terms that is set to zero (node.t == 0). The branches on
page 5-9 section in the component file establishes the terms that are summed to zero at
the node.

3 Declare the corresponding variables in the component file, for example:

variables
    w = { 1 , 'rad/s' };   % angular velocity
    t = { 1 , 'N*m' };     % torque
end

The names of the component variables do not have to match those of the domain Across and
Through variables, but the units must be commensurate. At this point, there is no connection
between the component variables and the domain variables.

4 Establish the relationship between the Through variables by using the branches section of the
component file. For example:
branches
    t : node1.t -> node2.t;    % t - Through variable from node1 to node2
end

This branch statement declares that t flows from node1 to node2. Therefore, t is subtracted
from the conserving equation identified by node1.t, and t is added to the conserving equation
identified by node2.t. For more information and examples, see the branches on page 5-9
reference page.

5 Establish relationship between the Across variables in the equations section of the component
file, for example, by adding the following equation:
equations
     w == node1.w - node2.w;       % w - Across variable between node1 and node2
     [...]      % more equations describing the component behavior, as necessary
end

Connecting One Through and One Across Variable
In this example, r and c are rotational nodes, while t and w are component variables for torque and
angular velocity, respectively. The relationship between the variables and nodes is established in the
branches and the equations sections:
component spring
  nodes
    r = foundation.mechanical.rotational.rotational;
    c = foundation.mechanical.rotational.rotational;
  end
  [...]
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  variables
    [...]
    t = { 0, 'N*m' };     % torque through
    w = { 0, 'rad/s' };   % velocity across
  end
  branches
    t : r.t -> c.t;       % t - Through variable from r to c
  end
  equations
    w == r.w - c.w;       % w - Across variable between r and c
    [...]                 % more equations here
  end
end

Connecting Two Through and Two Across Variables
This example shows setting up the Across and Through variables of a component with two electrical
windings, such as a transformer or mutual inductor. The component has four electrical nodes, and
each winding has its own voltage and current variables. The relationship between the variables and
nodes is established in the branches and the equations sections:

component two_windings
  nodes
    p1 = foundation.electrical.electrical;
    n1 = foundation.electrical.electrical;
    p2 = foundation.electrical.electrical;
    n2 = foundation.electrical.electrical;
  end
  [...]
  variables
    i1 = { 0, 'A' };
    v1 = { 0, 'V' };
    i2 = { 0, 'A' };
    v2 = { 0, 'V' };
  end
  [...]
  branches
    i1 : p1.i -> n1.i;   % Current through first winding
    i2 : p2.i -> n2.i;   % Current through second winding
  end
  equations
    v1 == p1.v - n1.v;   % Voltage across first winding
    v2 == p2.v - n2.v;   % Voltage across second winding
    [...]                % more equations here
  end
end
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Defining Component Equations
In this section...
“Equation Section Purpose” on page 2-26
“Specifying Mathematical Equality” on page 2-26
“Use of Relational Operators in Equations” on page 2-27
“Equation Dimensionality” on page 2-29
“Equation Continuity” on page 2-29
“Working with Physical Units in Equations” on page 2-30

Equation Section Purpose
The purpose of the equation section is to establish the mathematical relationships among a
component’s variables, parameters, inputs, outputs, time and the time derivatives of each of these
entities. The equation section of a Simscape file is executed throughout the simulation.

Note You can also specify equations that are executed during model initialization only, by using the
(Initial=true) attribute. For more information, see “Initial Equations” on page 2-33.

A Simscape language equation consists of two expressions connected with the == operator. Unlike
the regular assignment operator (=), the == operator specifies continuous mathematical equality
between the two expressions (for more information, see “Specifying Mathematical Equality” on page
2-26). The equation expressions may be constructed from any of the identifiers defined in the model
declaration. You can also access global simulation time from the equation section using the time
function.

For a list of MATLAB functions that you can use in the equation section, see Supported Functions.

Specifying Mathematical Equality
Simscape language stipulates semantically that all the equation expressions returned by the equation
section of a Simscape file specify continuous mathematical equality between two expressions.
Consider a simple example:

equations
   Expression1 == Expression2;
end

Here we have declared an equality between Expression1 and Expression2. The left- and right-
hand side expressions are any valid MATLAB expressions (see the next section on page 2-27 for
restrictions on using the relational operators: ==, <, >, <=, >=, ~=, &&, ||). The equation expressions
may be constructed from any of the identifiers defined in the model declaration.

The equation is defined with the == operator. This means that the equation does not represent
assignment but rather a symmetric mathematical relationship between the left- and right-hand
operands. Because == is symmetric, the left-hand operand is not restricted to just a variable. For
example:
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component MyComponent
  [...]
  variables
    a = 1;
    b = 1;
    c = 1;
  end
  equations
    a + b == c;
  end
end

The following example is mathematically equivalent to the previous example:

component MyComponent
  [...]
  variables
    a = 1;
    b = 1;
    c = 1;
  end
  equations
    0 == c - a - b;
  end
end

Note Equation expressions must be terminated with a semicolon or a newline. Unlike MATLAB, the
absence of a semicolon makes no difference. In any case, Simscape language does not display the
result as it evaluates the equation.

Use of Relational Operators in Equations
In the previous section on page 2-26 we discussed how == is used to declare mathematical equalities.
In MATLAB, however, == yields an expression like any other operator. For example:

(a == b) * c;

where a, b, and c represent scalar double values, is a legal MATLAB expression. This would mean,
take the logical value generated by testing a’s equivalence to b, coerce this value to a double and
multiply by c. If a is the same as b, then this expression will return c. Otherwise, it will return 0.

On the other hand, in MATLAB we can use == twice to build an expression:

a == b == c;

This expression is ambiguous, but MATLAB makes == and other relational operators left associative,
so this expression is treated as:

(a == b) == c;

The subtle difference between (a == b) == c and a == (b == c) can be significant in MATLAB,
but is even more significant in an equation. Because the use of == is significant in the Simscape
language, and to avoid ambiguity, the following syntax:

component MyComponent
  [...]
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  equations
    a == b == c;
  end
end

is illegal in the Simscape language. You must explicitly associate top-level occurrences of relational
operators. Either

component MyComponent
  [...]
  equations
    (a == b) == c;
  end
end

or

component MyComponent
  [...]
  equations
    a == (b == c);
  end
end

are legal. In either case, the quantity in the parentheses is equated to the quantity on the other side
of the equation.

With the exception of the top-level use of the == operator, == and other relational operators are left
associative. For example:

component MyComponent
  [...]
  parameters
    a = 1;
    b = 1;
    c = false;
  end
  variables
    d = 1;
  end
  equations
    (a == b == c) == d;
  end
end

is legal and interpreted as:

component MyComponent
  [...]
  parameters
    a = 1;
    b = 1;
    c = false;
  end
  variables
    d = 1;
  end
  equations
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    ((a == b) == c) == d;
  end
end

Equation Dimensionality
The expressions on either side of the == operator need not be scalar expressions. They must be either
the same size or one must be scalar. For example:

equations
  [...]
  <3x3 Expression> == <3x3 Expression>;
  [...]
end

is legal and introduces 9 scalar equations. The equation expression:

equations
  [...]
  <1x1 Expression> == <3x3 Expression>;
  [...]
end

is also legal. Here, the left-hand side of the equation is expanded, via scalar expansion, into the same
expression replicated into a 3x3 matrix. This equation expression also introduces 9 scalar equations.

However, the equation expression:

equations
  [...]
  <2x3 Expression> == <3x2 Expression>;
  [...]
end

is illegal because the sizes of the expressions on the left- and right-hand side are different.

Equation Continuity
The equation section is evaluated in continuous time. Some of the values that are accessible in the
equation section are themselves piecewise continuous, that is, they change continuously in time.
These values are:

• variables
• inputs
• outputs
• time

Piecewise continuous indicates that values are continuous over compact time intervals but may
change value at certain instances. The following values are continuous, but not time-varying:

• parameters
• constants

Time-varying countable values, for example, integer or logical, are never continuous.
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Continuity is propagated like a data type. It is propagated through continuous functions (see
Supported Functions).

Working with Physical Units in Equations
In Simscape language, you declare members (such as parameters, variables, inputs, and outputs) as
value with unit on page 2-5, and the equations automatically handle all unit conversions.

However, empirical formulae often employ noninteger exponents where the base is either unitless or
in known units. When working with these types of formulae, convert the base to a unitless value using
the value function and then reapply units if needed.

For example, the following formula gives the pressure drop, in Pa, in terms of flow rate, in m^3/s:

p == k * q^1.023 

where p is pressure, q is flow rate and k is some unitless constant. To write this formula in Simscape
language, use:

p == { k * value(q, 'm^3/s')^1.023, 'Pa' } 

This approach works regardless of the actual units of p or q, as long as they are commensurate with
pressure and volumetric flow rate, respectively. For example, the actual flow rate can be in gallons
per minute, the equation will still work and handle the unit conversion automatically.

See Also

Related Examples
• “Simple Algebraic System” on page 2-31
• “Use Simulation Time in Equations” on page 2-32

More About
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Intermediate Terms in Equations” on page 2-37
• “Using Lookup Tables in Equations” on page 2-48
• “Programming Run-Time Errors and Warnings” on page 2-50

2 Creating Custom Components and Domains

2-30



Simple Algebraic System
This example shows implementation for a simple algebraic system:

y = x2

x = 2y - 1

The Simscape file looks as follows:

component MyAlgebraicSystem
  outputs
    x = 0;
    y = 0;
  end
  equations
    y == x^2;        % y = x^2
    x == 2 * y - 1;  % x = 2 * y - 1
  end
end

See Also

Related Examples
• “Use Simulation Time in Equations” on page 2-32

More About
• “Defining Component Equations” on page 2-26
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Intermediate Terms in Equations” on page 2-37
• “Using Lookup Tables in Equations” on page 2-48
• “Programming Run-Time Errors and Warnings” on page 2-50
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Use Simulation Time in Equations
You can access global simulation time from the equation section using the time function. time
returns the simulation time in seconds.

The following example illustrates y = sin (ωt), where t is simulation time:

component
  parameters
    w = { 1, '1/s' } % omega
  end
  outputs
    y = 0;
  end
  equations
    y == sin( w * time );
  end
end

See Also

Related Examples
• “Simple Algebraic System” on page 2-31

More About
• “Defining Component Equations” on page 2-26
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Intermediate Terms in Equations” on page 2-37
• “Using Lookup Tables in Equations” on page 2-48
• “Programming Run-Time Errors and Warnings” on page 2-50
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Initial Equations
Regular equations are executed throughout the simulation. The (Initial=true) attribute lets you
specify additional equations that are executed during model initialization only.

Regular component equations alone are not sufficient to initialize a DAE system. Consider a system
with n continuous differential variables and m continuous algebraic variables. For simulation, this
system has n+m degrees of freedom and must provide n+m equations. The initialization problem has
up to n additional unknowns that correspond to the derivative variables. These additional unknowns
can be satisfied when you specify initial targets for block variables. Initial equations provide another
way to initialize a system.

In general, the maximum number of high-priority targets you can specify is equal to the number of
additional unknowns in the initialization problem. Besides the unknowns from differential variables,
the initialization problem also has one more unknown for each event variable. These additional
unknowns determine the maximum combined number of initial equations and high-priority variable
targets. If there are too many high-priority targets, these cannot all be met. For more information,
see “Block-Level Variable Initialization”.

Because the default value of the Initial attribute for equations is false, you can omit this
attribute when declaring regular equations:

equations (Initial = true)  % initial equations
  [...]
end

equations (Initial = false) % regular equations
  [...]
end

equations % regular equations
  [...]
end

The syntax of initial equations is the same as that of regular equations, except:

• der(x) in initial equations is treated as an unknown value and is solved for during initialization.
• delay and integ operators are disallowed.

When you include assert constructs in initial equations, their predicate conditions are checked only
once, after solving for initial conditions (before the start of simulation, see “Initial Conditions
Computation”). Use these assertions to safeguard against the model initializing with nonphysical
values. For more information, see “Programming Run-Time Errors and Warnings” on page 2-50.

A common use case for specifying initial equations is to initialize a system in steady state, for
example:

component C

    parameters
        a = {-5, '1/s'};
        b = {-2, '1/s'};
    end
    
    outputs
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        x = 5;
        y = 10;
    end
    
    equations
       der(x) == a*x + b*y;
       der(y) == b*y;
    end

    equations(Initial=true)
       der(x) == 0;
       der(y) == 0;
    end

end

At initialization time, the equations are:

       der(x) == 0;
       der(y) == 0;
       der(x) == a*x + b*y;
       der(y) == b*y;

For the rest of the simulation, the equations are:

       der(x) == a*x + b*y;
       der(y) == b*y;

Note When you initialize a model from an operating point, especially one that was generated from
logged simulation data, the operating point is likely to contain all the necessary high-priority targets
and applying initial equations would result in an over-specified model. Therefore, if you initialize a
model from an operating point, the solver ignores all the initial equations that contain variables
present in the operating point data. Initial equations for other variables are not affected: for example,
if you add a block to the model after extracting the operating point data, initial equations for this
block will be executed at initialization time. For more information, see “Using Operating Point Data
for Model Initialization”.

See Also

More About
• “Defining Component Equations” on page 2-26
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Intermediate Terms in Equations” on page 2-37
• “Using Lookup Tables in Equations” on page 2-48
• “Programming Run-Time Errors and Warnings” on page 2-50
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Using Conditional Expressions in Equations
In this section...
“Statement Syntax” on page 2-35
“Restrictions” on page 2-35
“Example” on page 2-35

Statement Syntax
You can specify conditional equations by using if statements.

equations
  [...]
  if Expression
    [...]
  elseif Expression
    [...]
  else
    [...]
  end
  [...]
end

Each [...] section may contain one or more equation expressions.

You can nest if statements, for example:

equations
  [...]
  if Expression
    [...]
    if Expression
       [...]
    else
    [...]
    end
  else
    [...]
  end
  [...]
end

Restrictions
• Every if requires an else.
• The total number of equation expressions, their dimensionality, and their order must be the same

for every branch of the if-elseif-else statement. However, this rule does not apply to the
assert expressions, because they are not included in the expression count for the branch.

Example
For a component where x and y are declared as 1x1 variables, specify the following piecewise
equation:
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y =
x for −1 < =  x < = 1
x2 otherwise 

This equation, written in the Simscape language, would look like:

equations
  if x >= -1 && x <= 1
    y == x;
  else
    y == x^2;
  end
end

Another way to write this equation in the Simscape language is:

equations
  y == if x>=-1 && x<=1, x else x^2 end
end

See Also

More About
• “Defining Component Equations” on page 2-26
• “Using Intermediate Terms in Equations” on page 2-37
• “Using Lookup Tables in Equations” on page 2-48
• “Programming Run-Time Errors and Warnings” on page 2-50
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Using Intermediate Terms in Equations
In this section...
“Why Use Intermediate Terms?” on page 2-37
“Declaring and Using Named Intermediate Terms” on page 2-38
“Using the let Expressions” on page 2-40

Why Use Intermediate Terms?
Textbooks often define certain equation terms in separate equations, and then substitute these
intermediate equations into the main one. For example, for fully developed flow in ducts, the Darcy
friction factor can be used to compute pressure loss:

P = f · L · ρ · V2

2D

where P is pressure, f is the Darcy friction factor, L is length, ρ is density, V is flow velocity, and D is
hydraulic area.

These terms are further defined by:

f = 0.316
Re1/4

Re = D · V
ν

D = 4A
π

V = q
A

where Re is the Reynolds number, A is the area, q is volumetric flow rate, and ν is the kinematic
viscosity.

In Simscape language, there are two ways that you can define intermediate terms for use in
equations:

• intermediates section — Declare reusable named intermediate terms in the intermediates
section in a component or domain file. You can reuse these intermediate terms in any equations
section within the same component file, in an enclosing composite component file, or in any
component that has nodes of that domain type.

• let expressions in the equations section — Declare intermediate terms in the declaration clause
and use them in the expression clause of the same let expression. Use this method if you need to
define intermediate terms of limited scope, for use in a single group of equations. This way, the
declarations and equations are close together, which improves code readability.

Another advantage of using named intermediate terms instead of let expressions is that you can
include named intermediate terms in simulation data logs.
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The following example shows the same Darcy-Weisbach equation with intermediate terms written out
in Simscape language:

component MyComponent
  [...]
  parameters
    L   = { 1,    'm' };      % Length
    rho = { 1e3,  'kg/m^3' }; % Density
    nu  = { 1e-6, 'm^2/s' };  % Kinematic viscosity
  end
  variables
    p    = { 0, 'Pa' };       % Pressure
    q    = { 0, 'm^3/s' };    % Volumetric flow rate
    A    = { 0, 'm^2' };      % Area
  end
  intermediates
    f    = 0.316 / Re_d^0.25;    % Darcy friction factor
    Re_d = D_h * V / nu;         % Reynolds number
    D_h  = sqrt( 4.0 * A / pi ); % Hydraulic diameter
    V    = q / A;                % Flow velocity
  end
  equations
      p == f * L * rho * V^2 / (2 * D_h); % final equation
    end
  end
end

After substitution of all intermediate terms, the final equation becomes:
p==0.316/(sqrt(4.0 * A / pi) * q / A / nu)^0.25 * L * rho * (q / A)^2 / (2 * sqrt(4.0 * A / pi));

When you use this component in a model and log simulation data, the logs will include data for the
four intermediate terms, with their descriptive names (such as Darcy friction factor) shown in
the Simscape Results Explorer.

Declaring and Using Named Intermediate Terms
The intermediates section in a component file lets you define named intermediate terms for use in
equations. Think of named intermediate terms as of defining an alias for an expression. You can reuse
it in any equations section within the same file or an enclosing composite component. When an
intermediate term is used in an equation, it is ultimately substituted with the expression that it refers
to.

You can also include an intermediates section in a domain file and reuse these intermediate terms
in any component that has nodes of that domain type.

Syntax Rules and Restrictions

You declare an intermediate term by assigning a unique identifier on the left-hand side of the equal
sign (=) to an expression on the right-hand side of the equal sign.

The expression on the right-hand side of the equal sign:

• Can refer to other intermediate terms. For example, in the Darcy-Weisbach equation, the identifier
Re_d (Reynolds number) is used in the expression declaring the identifier f (Darcy friction factor).
The only requirement is that these references are acyclic.
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• Can refer to parameters, variables, inputs, outputs, member components and their parameters,
variables, inputs, and outputs, as well as Across variables of domains used by the component
nodes.

• Cannot refer to Through variables of domains used by the component nodes.

You can use intermediate terms in equations, as described in “Use in Equations” on page 2-39.
However, you cannot access intermediate terms in the setup function.

Intermediate terms can appear in simulation data logs and Simscape Results Explorer, as described in
“Data Logging” on page 2-40. However, intermediate terms do not appear in:

• Variable Viewer
• Statistics Viewer
• Operating Point data
• Block dialog boxes and Property Inspector

Use in Equations

After declaring an intermediate term, you can refer to it by its identifier anywhere in the equations
section of the same component. For example:

component A
  [...]
  parameters
    p1 = { 1, 'm' };   
  end
  variables
    v1 = { 0, 'm' };  
    v2 = { 0, 'm^2' };   
  end
  intermediates
    int_expr = v1^2 * pi / p1;             
  end
  equations
      v2 == v1^2 + int_expr; 
  end
end

You can refer to a public intermediate term declared in a member component in the equations of an
enclosing composite component. For example:

component B
  [...]
  components
    comp1 = MyPackage.A;   
  end
  variables
    v1 = { 0, 'm^2' };     
  end
  [...]
  equations
      v1 == comp1.int_expr; 
  end
end
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Similarly, you can refer to an intermediate term declared in a domain in the equations section of any
component that has nodes of this domain type. For example:

domain D
  [...]
  intermediates
    int_expr = v1 / sqrt(2);             
  end
  [...]
end

component C
  [...]
  nodes
    n = D;   
  end
  variables
    v1 = { 0, 'V' };     
  end
  [...]
  equations
      v1 == n.int_expr; 
  end
end

Accessibility of intermediate terms outside of the file where they are declared is governed by their
Access attribute value. For mode information, see “Attribute Lists” on page 2-105.

Data Logging

Intermediate terms with ExternalAccess attribute values of modify or observe are included in
simulation data logs. For mode information, see “Attribute Lists” on page 2-105.

If you specify a descriptive name for an intermediate term, this name appears in the status panel of
the Simscape Results Explorer.

For example, you declare the intermediate term D_h (hydraulic diameter) as a function of the orifice
area:

component E
  [...]
  intermediates
    D_h  = sqrt( 4.0 * A / pi ); % Hydraulic diameter
  end
  [...]
end

When you use a block based on this component in a model and log simulation data, selecting D_h in
the Simscape Results Explorer tree on the left displays a plot of the values of the hydraulic diameter
over time in the right pane and the name Hydraulic diameter in the status panel at the bottom.
For more information, see “About the Simscape Results Explorer”.

Using the let Expressions
let expressions provide another way to define intermediate terms for use in one or more equations.
Use this method if you need to define intermediate terms of limited scope, for use in a single group of
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equations. This way, the declarations and equations are close together, which improves file
readability.

The following example shows the same Darcy-Weisbach equation as in the beginning of this topic but
with intermediate terms written out using the let expression:

component MyComponent
  [...]
  parameters
    L   = { 1,    'm' };      % Length
    rho = { 1e3,  'kg/m^3' }; % Density
    nu  = { 1e-6, 'm^2/s' };  % Kinematic viscosity
  end
  variables
    p    = { 0, 'Pa' };       % Pressure
    q    = { 0, 'm^3/s' };    % Volumetric flow rate
    A    = { 0, 'm^2' };      % Area
  end
  equations
    let
      f    = 0.316 / Re_d^0.25;    % Darcy friction factor
      Re_d = D_h * V / nu;         % Reynolds number
      D_h  = sqrt( 4.0 * A / pi ); % Hydraulic diameter
      V    = q / A;                % Flow velocity
    in
      p == f * L * rho * V^2 / (2 * D_h); % final equation
    end
  end
end

After substitution of all intermediate terms, the final equation becomes:
p==0.316/(sqrt(4.0 * A / pi) * q / A / nu)^0.25 * L * rho * (q / A)^2 / (2 * sqrt(4.0 * A / pi));

However, in this case the four intermediate terms do not appear in logged simulation data.

Syntax Rules of let Expressions

A let expression consists of two clauses, the declaration clause and the expression clause.

equations
  [...]
  let 
    declaration clause
  in
    expression clause
  end
  [...]
end

The declaration clause assigns an identifier, or set of identifiers, on the left-hand side of the equal
sign (=) to an equation expression on the right-hand side of the equal sign:

  LetValue = EquationExpression

The expression clause defines the scope of the substitution. It starts with the keyword in, and may
contain one or more equation expressions. All the expressions assigned to the identifiers in the
declaration clause are substituted into the equations in the expression clause during parsing.
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Note The end keyword is required at the end of a let-in-end statement.

Here is a simple example:

component MyComponent
  [...]
  variables
    x = 0;
    y = 0;
  end
  equations
    let
      z = y + 1;
    in
      x == z;
    end
  end
end

In this example, the declaration clause of the let expression sets the value of the identifier z to be
the expression y + 1. Thus, substituting y + 1 for z in the expression clause in the let statement, the
code above is equivalent to:

component MyComponent
  [...]
  variables
    x = 0;
    y = 0;
  end
  equations
    x == y + 1;
  end
  end
end

There may be multiple declarations in the declaration clause. These declarations are order
independent. The identifiers declared in one declaration may be referred to by the expressions for
identifiers in other declarations in the same declaration clause. Thus, in the example with the Darcy-
Weisbach equation, the identifier Re_d (Reynolds number) is used in the expression declaring the
identifier f (Darcy friction factor). The only requirement is that the expression references are acyclic.

The expression clause of a let expression defines the scope of the substitution for the declaration
clause. Other equations, that do not require these substitutions, may appear in the equation section
outside of the expression clause. In the following example, the equation section contains the equation
expression c == b + 2 outside the scope of the let expression before it.

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    let
      x = a + 1;
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    in
      b == x;
    end
    c == b + 2;
  end
end

These expressions are treated as peers. They are order independent, so this example is equivalent to

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    c == b + 2;
    let
      x = a + 1;
    in
      b == x;
    end
  end
end

and, after the substitution, to

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    b == a + 1;
    c == b + 2;
  end
end

Nested let Expressions

You can nest let expressions, for example:

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    let
      w = a + 1;
    in
      let
        z = w + 1;
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      in
        b == z;
        c == w;
      end
    end
  end
end

In case of nesting, substitutions are performed based on both of the declaration clauses. After the
substitutions, the code above becomes:

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    b == a + 1 + 1;
    c == a + 1;
  end
end

The innermost declarations take precedence. The following example illustrates a nested let
expression where the inner declaration clause overrides the value declared in the outer one:

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
  end
  equations
    let
      w = a + 1;
    in
      let
        w = a + 2;
      in
        b == w;
      end
    end
  end
end

Performing substitution on this example yields:

  component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
  end
  equations
    b == a + 2;
  end
end
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Conditional let Expressions

You can use if statements within both declarative and expression clause of let expressions, for
example:

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    let
      x = if a < 0, a else b end;
    in
      c == x;
    end
  end
end

Here x is declared as the conditional expression based on a < 0. Performing substitution on this
example yields:

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    c == if a < 0, a else b end;
  end
end

The next example illustrates how you can use let expressions within conditional expressions. The
two let expressions on either side of the conditional expression are independent:

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    if a < 0
      let
        z = b + 1;
      in
        c == z;
      end
    else
      let
        z = b + 2;
      in
        c == z;
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      end
    end
  end
end

This code is equivalent to:

  component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
  end
  equations
    if a < 0
      c == b + 1;
    else
      c == b + 2;
    end
  end
end

Identifier List in the Declarative Clause

This example shows using an identifier list, rather than a single identifier, in the declarative clause of
a let expression:

component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
    d = 0;
  end
  equations
    let
      [x, y] = if a < 0, a; -a else -b; b end;
    in
      c == x;
      d == y;
    end
  end
end

Here x and y are declared as the conditional expression based on a < 0. Notice that each side of the
if statement defines a list of two expressions. A first semantic translation of this example separates
the if statement into
if a < 0, a; -a else -b; b end => 
   { if a < 0, a else -b end; if a < 0, -a else b end }

then the second semantic translation becomes
[x, y] = { if a < 0, a else -b end; if a < 0, -a else b end } => 
   x = if a < 0, a else -b end; y = if a < 0, -a else b end;

and the final substitution on this example yields:
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component MyComponent
  [...]
  variables
    a = 0;
    b = 0;
    c = 0;
    d = 0;
  end
  equations
    c == if a < 0, a else -b end;
    d == if a < 0, -a else b end;
  end
end

See Also
intermediates

More About
• “Defining Component Equations” on page 2-26
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Lookup Tables in Equations” on page 2-48
• “Programming Run-Time Errors and Warnings” on page 2-50
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Using Lookup Tables in Equations
You can use the tablelookup function in the equations section of the Simscape file to interpolate
input values based on a set of data points in a one-dimensional, two-dimensional, or three-
dimensional table. This functionality is similar to that of the Simulink and Simscape Lookup Table
blocks. It allows you to incorporate table-driven modeling directly in your custom block, without the
need of connecting an external Lookup Table block to your model.

The following example implements mapping temperature to pressure using a one-dimensional lookup
table.

component TtoP
 inputs
   u = {0, 'K'}; % temperature
 end
 outputs
   y = {0, 'Pa'}; % pressure
 end
 parameters (Size=variable)
   xd = {[100 200 300 400] 'K'};
   yd = {[1e5 2e5 3e5 4e5] 'Pa'};
 end
 equations
   y == tablelookup(xd, yd, u, interpolation=linear, extrapolation=nearest);
 end
end

xd and yd are declared as variable-size parameters with units. This enables the block users to
provide their own data sets when the component is converted to a custom block, and also to select
commensurate units from the drop-downs in the custom block dialog box. The next illustration shows
the dialog box of the custom block generated from this component.

Note Currently, you cannot use variable-size parameters in the equations section outside of the
tablelookup function.

To avoid repeating the same variable-size parameter declarations in each component that needs to
use them in its tablelookup function, you can declare variable-size domain parameters and
propagate them to components for interpolation purposes. For more information, see “Propagation of
Domain Parameters” on page 2-100.

The following rules apply to the one-dimensional arrays xd and yd:

• The two arrays must be of the same size.
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• For smooth interpolation, each array must contain at least three values. For linear interpolation,
two values are sufficient.

• The xd values must be strictly monotonic, either increasing or decreasing.

The TtoP component uses linear interpolation for values within the table range, but outputs the
nearest value of yd for out-of-range input values. The following illustration shows a block diagram,
where the custom TtoP block is used with a linear input signal changing from 0 to 1000, and the
resulting output.

See the tablelookup reference page for syntax specifics and more examples.

See Also

More About
• “Defining Component Equations” on page 2-26
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Intermediate Terms in Equations” on page 2-37
• “Programming Run-Time Errors and Warnings” on page 2-50

 Using Lookup Tables in Equations

2-49



Programming Run-Time Errors and Warnings
Use the assert construct to implement run-time error and warning messages for a custom block. In
the component file, you specify the condition to be evaluated, as well as the error message to be
output if this condition is violated. When the custom block based on this component file is used in a
model, it will output this message if the condition is violated during simulation. The optional Action
attribute of the assert construct specifies whether simulation stops when the predicate condition is
violated, continues with a warning, or ignores the violation.

The following component file implements a variable resistor, where input physical signal R supplies
the resistance value. The assert construct checks that this input signal is greater than or equal to
zero:

component MyVariableResistor
% Variable Resistor
% Models a linear variable resistor. The relationship between voltage V
% and current I is V=I*R where R is the numerical value presented at the
% physical signal port R. If this signal becomes negative, simulation
% errors out.
%

  inputs
    R = { 0.0, 'Ohm' };
  end

  nodes
    p = foundation.electrical.electrical; % +:left
    n = foundation.electrical.electrical; % -:right
  end

  variables
    i = { 0, 'A' };
    v = { 0, 'V' };
  end

  branches
    i : p.i -> n.i;
  end

  equations
    assert( R >= 0, 'Negative resistance is not modeled' );
    v == p.v - n.v;
    v == i*R;
  end

end

If a model contains this Variable Resistor block, and signal R becomes negative during simulation,
then simulation stops and the Simulation Diagnostics window opens with a message similar to the
following:
At time 3.200000, an assertion is triggered. Negative resistance is not modeled.
The assertion comes from:
Block path: dc_motor1/Variable Resistor
Assert location: between line: 29, column: 14 and line: 29, column: 18 in file:
C:/Work/libraries/+MySimscapeLibrary/+ElectricalElements/MyVariableResistor.ssc
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The error message contains the following information:

• Simulation time when the assertion got triggered
• The message string (in this example, Negative resistance is not modeled)
• An active link to the block that triggered the assertion. Click the Block path link to highlight the

block in the model diagram.
• An active link to the assert location in the component source file. Click the Assert location

link to open the Simscape source file of the component, with the cursor at the start of violated
predicate condition. For Simscape protected files, the Assert location information is omitted
from the error message.

See the assert reference page for syntax specifics and more examples.

See Also

More About
• “Defining Component Equations” on page 2-26
• “Using Conditional Expressions in Equations” on page 2-35
• “Using Intermediate Terms in Equations” on page 2-37
• “Using Lookup Tables in Equations” on page 2-48
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Import Symbolic Math Toolbox Equations
When designing a Simscape language component, you can use Symbolic Math Toolbox software to
solve the physical equations and generate code in the format appropriate for the Simscape language
equation section. Then, import the results by copying and pasting them into the equation section of a
component file and declaring all the symbolic variables used in these equations.

Suppose, you want to generate a Simscape equation from the solution of the following ordinary
differential equation. As a first step, use the dsolve function to solve the equation:

syms a y(t)
Dy = diff(y);
s = dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0);
s = simplify(s)

The solution is:

s =
cos(a*t)

Then, use the simscapeEquation function to rewrite the solution in the Simscape language
equation format:

simscapeEquation(s)

simscapeEquation generates the following code:

ans =
s == cos(a*time);

Copy and paste the generated code into the equation section of a component file:

component MyComponent
  
  equations
        s == cos(a*time);  
  end
end

Make sure the declaration section of the component file contains all the symbolic variables used in
these equations. You can declare these symbolic variables as Simscape language variables,
parameters, inputs, or outputs, depending on their physical function and your intended block design.

component MyComponent
  inputs
    a = {1,'m/s'};  
  end
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  outputs
    s = {0,'m'}; 
  end
  equations
        s == cos(a*time);  
  end
end

See Also

Related Examples
• “Use Simulation Time in Equations” on page 2-32

More About
• “Get Started with Symbolic Math Toolbox” (Symbolic Math Toolbox)
• “Generate Simscape Equations from Symbolic Expressions” (Symbolic Math Toolbox)
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Discrete Event Modeling
In this section...
“Event Variables” on page 2-54
“Event Data Type and edge Operator” on page 2-54
“Events Section and when Clause” on page 2-55

Physical modeling, in general, involves continuous variables and equations. In some cases, however,
you can simplify the mathematical model of the system and improve simulation performance by
treating certain changes in system behavior as discrete. Such an idealization assumes that system
variables may only change values instantaneously and discontinuously at specific points in time.

An event is a conceptual notation that denotes a change of state in a system. Event modeling lets you
perform discrete changes on continuous variables. The two most common applications of event
modeling are:

• Trigger-and-hold mechanism, such as a triggered delay. For example, a component has two inputs:
u and x (triggered signal), and one output y. When and only when the triggered signal x changes
value from false to true, output y is reset to the value of u at current time. y remains unchanged
all other times.

• Enabled component, acting on a principle similar to Simulink enabled subsystem. That is, the
component has a control signal as input. If the control signal has a positive value, then the
component holds certain states to the most recent value, or resets them. When the control signal
is negative, the states change according to component equations.

The following constructs in Simscape language let you perform event modeling: event variables,
events section, when clause, and edge operator.

Event Variables
Event variables are piecewise constant, that is, they change values only at event instants, and keep
their values constant between events. You can declare internal component variables of type integer or
real as event variables by setting the Event=true attribute.

For example, the following code declares two event variables: x (type real) and d (type integer).

variables (Event=true)
   x = 0;
   d = int32(0);
end

You can initialize event variables by using the initialevent operator. You can also initialize event
variables the same way as continuous variables, by setting their target values and priorities in the
member declaration block. For more information, see initialevent.

You update the values of the event variables in the events section of the component file, by using the
when clause.

Event Data Type and edge Operator
The edge operator takes a scalar Boolean expression as input. It returns true, and triggers an event,
when and only when the input argument changes value from false to true. The return type of edge is
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event type. Event data type is a special category of Boolean type, which returns true only
instantaneously, and returns false otherwise.

The following graphic illustrates the difference between Boolean and event data types.

edge(b) returns true only when b changes from false to true.

To trigger an event on the falling edge of condition b, use edge(~b).

The data derivation rules between Boolean and event data types are:

• edge(boolean) is event
• ~event is boolean
• (event && event) is event
• (event && boolean) is event
• (event || event) is event
• (event || boolean) is boolean

You use the edge operator to define event predicates in when clauses.

Events Section and when Clause
The events section in a component file manages the event updates. The events section can contain
only when clauses. The order of when clauses does not matter.

The when clause serves to update the values of the event variables. The syntax is

when EventPredicate
  var1 = expr1; 
  var2 = expr2; 
  ...
end

EventPredicate is an expression that defines when an event occurs. It must be an expression of
event data type, as described in “Event Data Type and edge Operator” on page 2-54.

The variables in the body of the when clause must be declared as event variables. When the event
predicate returns true, all the variables in the body of the when clause simultaneously get updated to
the new values.
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The order of the variable assignments in the body of the when clause does not matter, because all
updates happen simultaneously. For example, if d1 and d2 are event variables initialized to 0,

when edge(time>1.0)
   d1 = d2 + 1;  
   d2 = d1 + 1;  
 end

is equivalent to:

when edge(time>1.0)
   d2 = d1 + 1;  
   d1 = d2 + 1;  
end

After the event, both d1 and d2 have a new value of 1, because they were both simultaneously
updated by adding 1 to the old value of 0.

A when clause cannot update an event variable more than once within the same assignments list.
However, two independent when clauses also may not update the same event variable. You must use
an elsewhen branch to do this.

Branching of the elsewhen Clauses

A when clause can optionally have one or more elsewhen branches:

when EventPredicate
  var1 = expr1; 
  var2 = expr2; 
  ...
elsewhen EventPredicate
  var1 = expr3; 
  ...
end

Note The default else branch in a when clause is illegal.

A common usage of elsewhen branches is to prioritize events. If multiple predicates become true at
the same point in time, only the branch with the highest precedence is activated. The precedence of
the branches in a when clause is determined by their declaration order. That is, the when branch has
the highest priority, the last elsewhen branch has the lowest priority.

See Also

Related Examples
• “Triggered Delay Component” on page 2-57
• “Enabled Component” on page 2-58
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Triggered Delay Component
The following example implements a triggered delay component:

component Triggered
   inputs
      u = 0; % input signal
      triggered = 0; % control signal
   end
   variables(Event=true)
      x = 0;
   end
   outputs
      y = 0;
   end
   events
      when edge(triggered>0)
        x = u;
      end
   end
   equations
      y == x;
   end
end

When the control signal becomes positive, the event variable x gets updated to the current value of
the input signal u. Output y outputs the value of x. Therefore, the output signal y gets updated to the
current value of the input signal u on the rising edge of the control signal, and then holds that value
between the events.

See Also

Related Examples
• “Enabled Component” on page 2-58

More About
• “Discrete Event Modeling” on page 2-54
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Enabled Component
The following example implements a component similar to a Simulink enabled subsystem:

component EnabledComponent
    inputs
        enabled = 0;     % control signal
        u = 0;         % input signal
    end
    variables (Event=true)
        x = 0;         % state to hold output if necessary
    end
    outputs
        y = 0;         % output
    end
    parameters
        held = true;     % set true for held or false for reset
        y_init = 0;
    end
    events
        when edge(held && ~(enabled>0))
            x = u;    % if necessary, hold input on falling edge
        end
    end
    equations
        if enabled > 0
            y == u;
        elseif held==true
            y == x;
        else         % not enabled and not held
            y == y_init;
        end
    end
end

The component has two inputs: control signal enabled and data signal u.

The block operation depends on the value of the held parameter: if it is true, then the event
variable x assumes the value of the input data signal u on the falling edge of the control signal.

As long as the control signal has a positive value, the output y matches the input data signal u. When
the control signal is negative:

• If held is true, the output port y outputs the most recent held value of the event variable.
• If held is false, the output resets to the initial value, specified by the y_init parameter.

See Also

Related Examples
• “Triggered Delay Component” on page 2-57
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More About
• “Discrete Event Modeling” on page 2-54

 Enabled Component

2-59



About Composite Components
A composite component is constructed out of other components. To create a composite component,
you have to list the names of the member (constituent) components and then specify how the ports of
the member components are connected to each other and to the external ports of the composite
component. You also specify which parameters of the member components are to be visible, and
therefore adjustable, in the block dialog box of the composite component.

In certain ways, this functionality is similar to creating a subsystem in a Simulink block diagram,
however there are important differences. Simscape language is a textual environment, and therefore
you cannot “look under mask” and see a graphical representation of the underlying component
connections. At the same time, the textual environment is a very powerful tool for modeling complex
modular systems that consist of multiple interconnected member components.

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-97
• “Composite Component Using import Statements” on page 2-113
• “Component Variants — Series RLC Branch” on page 2-85
• “Segmented Pipeline Using Component Array” on page 3-31
• “Case Study — Battery Pack with Fault Using Arrays” on page 3-33

More About
• “Declaring Member Components” on page 2-61
• “Parameterizing Composite Components” on page 2-62
• “Specifying Initial Target Values for Member Variables” on page 2-64
• “Specifying Component Connections” on page 2-66
• “Importing Domain and Component Classes” on page 2-111
• “Defining Component Variants” on page 2-77
• “Component Arrays” on page 3-28
• “Converting Subsystems into Composite Components” on page 2-72
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Declaring Member Components
A components declaration block begins with a components keyword and is terminated by an end
keyword. This block contains declarations for member components included in the composite
component. A components declaration block must have its ExternalAccess attribute value set to
observe (for more information on member attributes, see “Attribute Lists” on page 2-105).

When declaring a member component, you have to associate it with an existing component file, either
in the Simscape Foundation libraries or in your custom package. You need to refer to the component
name using the full path starting with the top package directory. For more information on packaging
your Simscape files, see “Building Custom Block Libraries” on page 4-25.

The following example includes a Rotational Spring block from the Simscape Foundation library in
your custom component:

components(ExternalAccess=observe)
    rot_spring = foundation.mechanical.rotational.spring;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the component file
spring.ssc.

If you want to use your own customized rotational spring called spring.ssc and located at the top
level of your custom package directory +MechanicalElements, the syntax would be:

components(ExternalAccess=observe)
    rot_spring = MechanicalElements.spring;
end

Once you declare a member component, use its identifier (in the preceding examples, rot_spring)
to refer to its parameters, variables, nodes, inputs, and outputs. For example,
rot_spring.spr_rate refers to the Spring rate parameter of the Rotational Spring block.

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-97

More About
• “Parameterizing Composite Components” on page 2-62
• “Specifying Initial Target Values for Member Variables” on page 2-64
• “Specifying Component Connections” on page 2-66
• “Importing Domain and Component Classes” on page 2-111
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Parameterizing Composite Components
Composite component parameters let you adjust the desired parameters of the underlying member
components from the top-level block dialog box when building and simulating a model.

Specify the composite component parameters by declaring a corresponding parameter in the top-
level parameters declaration block, and then assigning it to the desired parameter of a member
component. The declaration syntax is the same as described in “Declare Component Parameters” on
page 2-13.

For example, the following code includes a Foundation library Resistor block in your custom
component file, with the ability to control the resistance at the top level and a default resistance of 10
Ohm:

component MyCompositeModel
[...]
  parameters
     p1 = {10, 'Ohm'};
     [...]
  end
  components(ExternalAccess=observe)
     r1 = foundation.electrical.elements.resistor(R = p1);
     [...]
  end
[...]
end

You do not have to assign all the parameters of member blocks to top-level parameters. If a member
block parameter does not have a corresponding top-level parameter, the composite model uses the
default value of this parameter, specified in the member component.

Caution on Using setup to Parameterize Composite Components
You can establish the connection of a top-level parameter with a member component parameter
either in the components declaration block, or later, in the setup section. Starting in R2019a, using
setup is not recommended. If you have legacy code using the setup function, update it to use
parameter assignment in the components block instead. For example, this code is equivalent to the
example above:

component MyCompositeModel
[...]
  parameters
     p1 = {10, 'Ohm'};
     [...]
  end
  components(ExternalAccess=observe)
     r1 = foundation.electrical.elements.resistor;
     ...
  end
   [...]
   function setup
      r1.R = p1;
   end
   [...]
end
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Note In case of conflict, assignments in the setup section override those made in the declaration
section.

Components are instantiated using default parameter values in the declaration section before setup
is run. Therefore, if you make adjustments to the parameters in the setup section, use a subsequent
setup section assignment to establish proper connection between the top-level parameter with a
member component parameter, as shown in the following example:

component RC
  nodes
    p = foundation.electrical.electrical; % :right
    n = foundation.electrical.electrical; % :left
  end
  parameters
    R = {1 , 'Ohm'}; % Resistance
    tc = {1 , 's'};  % RC time constant
  end
  parameters(ExternalAccess=observe)
    C = {1 , 'F'};
  end
  components(ExternalAccess=observe)
    c1 = foundation.electrical.elements.capacitor(c=C);
    r1 = foundation.electrical.elements.resistor(R=R);
  end
  function setup
    C = tc/R;
    c1.c = C; % This assignment ensures correct operation
  end
  connections
    connect(c1.p, p);
    connect(c1.n, r1.p);
    connect(r1.n, n);
  end
end

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-97

More About
• “Declaring Member Components” on page 2-61
• “Specifying Initial Target Values for Member Variables” on page 2-64
• “Specifying Component Connections” on page 2-66
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Specifying Initial Target Values for Member Variables
Member components have to be declared with ExternalAccess=observe, and therefore their
variables do not appear in the Variables tab of the top-level block dialog box. However, if a certain
member component variable is important for initialization, you can tie its value to an initialization
parameter in the top-level parameters declaration block. In this case, the block user will be able to
adjust the initial target value of the member component variable from the top-level block dialog box
when building and simulating a model.

Note The block user cannot change the initialization priority of the member component variable. You
specify the variable initialization priority when you declare the member component. The syntax is the
same as described in “Variable Priority for Model Initialization” on page 2-9.

For example, you have a composite DC Motor block (similar to the one described in “Composite
Component — DC Motor” on page 2-97) and want the block user to specify the initial target value
for the inductor current, with low priority. The following code includes a Foundation library Inductor
block in your custom component file, with the ability to control its inductance at the top level (by
using the Rotor Inductance block parameter) and also to specify a low-priority initial target for the
inductor current variable:
component DCMotor2
[...]
  parameters
     rotor_inductance = { 12e-6, 'H' };    % Rotor Inductance
     i0 = { 0, 'A' };  % Initial current target for Rotor Inductor
     [...]
  end
  components(ExternalAccess=observe)
     rotorInductor = foundation.electrical.elements.inductor(l = rotor_inductance, 
                                      i_L = {value = i0, priority = priority.low});
     [...]
  end
[...]
end

In this case, the block user can specify a value for the Initial current target for Rotor Inductor
parameter, which appears in the block dialog box of the composite component. This value gets
assigned as the initial target to variable i_L (Initial current variable of the member Inductor block),
with low initialization priority. Depending on the results of the solve, the target may or may not be
satisfied when the solver computes the initial conditions for simulation. For more information, see
“Block-Level Variable Initialization”.

You can use an alternative syntax that lets you assign the variable value and priority data fields
separately, using the dot notation. For example, the following statement:
      rotorInductor = foundation.electrical.elements.inductor(l = rotor_inductance, 
                                      i_L.value = i0, i_L.priority = priority.low);
     

is equivalent to the Inductor component declaration from the previous example.
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See Also

Related Examples
• “Composite Component — DC Motor” on page 2-97

More About
• “Declaring Member Components” on page 2-61
• “Parameterizing Composite Components” on page 2-62
• “Specifying Component Connections” on page 2-66
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Specifying Component Connections
In this section...
“About the Structure Section” on page 2-66
“Conserving Connections” on page 2-67
“Connections to Implicit Reference Node” on page 2-68
“Physical Signal Connections” on page 2-68
“Nonscalar Physical Signal Connections” on page 2-70

About the Structure Section
The structure section of a Simscape file is executed once during compilation. This section contains
information on how the constituent components’ ports are connected to one another, as well as to the
external inputs, outputs, and nodes of the top-level component.

The structure section begins with a connections keyword and is terminated by an end keyword.
This connections block contains a set of connect constructs, which describe both the conserving
connections (between nodes) and the physical signal connections (between the inputs and
outputs).

In the following example, the custom component file includes the Foundation library Voltage Sensor
and Electrical Reference blocks and specifies the following connections:

• Positive port of the voltage sensor to the external electrical conserving port + of the composite
component

• Negative port of the voltage sensor to ground
• Physical signal output port of the voltage sensor to the external output of the composite

component, located on the right side of the resulting block icon

component VoltSG
  nodes
     p = foundation.electrical.electrical; % +
  end
  outputs
     Out = { 0.0, 'V' }; % V:right
  end
  components(ExternalAccess=observe)
     VoltSensor = foundation.electrical.sensors.voltage;
     Grnd = foundation.electrical.elements.reference;
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  end
  connections
     connect(p, VoltSensor.p);
     connect(Grnd.V, VoltSensor.n);
     connect(VoltSensor.V, Out);
  end
end

In this example, the first two connect constructs specify conserving connections between electrical
nodes. The third connect construct is a physical signal connection. Although these constructs look
similar, their syntax rules are different.

Conserving Connections
For conserving connections, the connect construct can have two or more arguments. For example,
the connections in the following example

  connections
     connect(R1.p, R2.n);
     connect(R1.p, R3.p);
  end

can be replaced with

  connections
     connect(R1.p, R2.n, R3.p);
  end

The order of arguments does not matter. The only requirement is that the nodes being connected are
all of the same type (that is, are all associated with the same domain).

In the following example, the composite component consists of three identical resistors connected in
parallel:

component ParResistors
  nodes
     p = foundation.electrical.electrical;
     n = foundation.electrical.electrical;
  end
  parameters
    p1 = {3 , 'Ohm'};
  end
  components(ExternalAccess=observe)
    r1 = foundation.electrical.elements.resistor(R=p1);
    r2 = foundation.electrical.elements.resistor(R=p1);
    r3 = foundation.electrical.elements.resistor(R=p1);
  end
  connections
    connect(r1.p, r2.p, r3.p, p);
    connect(r1.n, r2.n, r3.n, n);
  end
end
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Connections to Implicit Reference Node
The * symbol indicates connections to a reference node in branch statements. You can also use it to
indicate connections to an implicit reference node within the structure section of a component:

connections
    connect(A, *);
end

The implicit reference node acts as a virtual grounding component. A node connected to an implicit
reference has all its Across variables equal to 0.

The * symbol is not domain-specific, and the same structure section can contain connections to
implicit reference in different domains:

component abc
    nodes
        M = foundation.hydraulic.hydraulic;
        N = foundation.electrical.electrical;
    end    
    connections
        connect(M,*);
        connect(N,*);
    end
end

However, multiple ports connected to an implicit reference within the same connect statement must
all belong to the same domain:

connections
    connect(a, b, *);
end

The order of ports does not matter. This behavior is consistent with general connection rules for
multiple conserving ports.

Physical Signal Connections
Physical signal connections are directional, therefore the connect construct has the following
format:

  connect(s, d);

where s is the signal source port and d is the destination port.

There can be more than one destination port connected to the same source port:

  connect(s, d1, d2);

The source and destination ports belong to the inputs or outputs member classes. The following
table lists valid source and destination combinations.

Source Destination
External input port of composite component Input port of member component
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Source Destination
Output port of member component Input port of member component
Output port of member component External output port of composite component

For example, consider the following block diagram.

It represents a composite component CompMeas, which, in turn, contains a composite component
Valve Subsystem, as well as several Foundation library blocks. The Simscape file of the composite
component would specify the equivalent signal connections with the following constructs.

Construct Explanation
connect(In, subt.I1); Connects port In to the input port + of the PS

Subtract block. Illustrates connecting an input
port of the composite component to an input port
of a member component.

connect(subt.O, gain.I); Connects the output port of the PS Subtract block
to the input port of the PS Gain block. Illustrates
connecting an output port of a member
component to an input port of another member
component at the same level.

connect(fl_rate.Q, subt.I2, Out); Connects the output port Q of the Hydraulic Flow
Rate Sensor block to the input port - of the PS
Subtract block and to the output port Out of the
composite component. Illustrates connecting a
single source to multiple destinations, and also
connecting an output port of a member
component to an output port of the enclosing
composite component.

Also notice that the output port of the PS Gain block is connected to the input port of the Valve
Subsystem composite block (another member component at the same level). Valve Subsystem is a
standalone composite component, and therefore if you connect the output port of the PS Gain block
to an input port of one of the member components inside the Valve Subsystem, that would violate the
causality of the physical signal connections (a destination port cannot be connected to multiple
sources).
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Nonscalar Physical Signal Connections
Multidimensional physical signals can be useful for:

• Aggregating measurements at different spatial points, such as temperatures along a coil or a 2-D
grid of elements

• Using 3-D body positions or velocities
• Using rotation matrices or quaternions in 3-D
• Using tensors

Simscape language supports nonscalar (vector-valued or matrix-valued) physical signals in inputs
and outputs declarations. All signals in such vector or matrix should have the same units. For
example, the following declaration

 inputs
   I = {zeros(3), 'm/s'}; % :left
 end

initializes a component input as a 3-by-3 matrix of linear velocities.

When you connect input and output ports carrying nonscalar physical signals, you can use signal
indexing and concatenation at the source, but not at the destination. Scalar expansion is not allowed.

The following table shows valid syntax examples, assuming subcomponent A with output signal port
A.o is being connected to subcomponent B with input signal port B.i, and all sizes and units are
compatible.

Construct Explanation
connect(A.o(1,2), B.i); Source indexing, to connect to a scalar

destination: take entry (1,2) of the output A.o and
connect it to the input B.i.

connect(A.o(1:2:5,2:3), B.i); Index by rows and columns to specify a
submatrix.

connect(A.o(1:2:end,:), B.i); Use colon notation to specify array boundaries
(pass every other column of the output A.o to
input B.i.

connect([A1.o, A2.o], B.i); Concatenate outputs A1.o and A2.o column-wise
and pass the result to the input B.i.

You can use block parameter values for indexing inside a connect statement, for example:

connect(a.o(value(param_name, '1'), 3), b.i);

When you connect two physical signals, their units must be directly convertible. If one of the signals
is declared as unitless (that is, with units of '1') , then you can connect a signal with any base units
to it. However, unit conversion is not supported in this case. For example, if a.i is a 2x1 unitless
input port, then this statement is valid:

connect([out1_in_meters, out2_in_seconds], a.i);
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If you connect signals with different scales of the same unit with a unitless input port, the compiler
alerts you to the fact that unit conversion is ignored. For example, the following statement produces a
warning at compile time:

connect([out1_in_km, out2_in_mm], a.i);

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-97

More About
• “Declaring Member Components” on page 2-61
• “Parameterizing Composite Components” on page 2-62
• “Specifying Initial Target Values for Member Variables” on page 2-64
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Converting Subsystems into Composite Components
In this section...
“Suggested Workflows” on page 2-72
“Parameter Promotion” on page 2-73
“Limitations” on page 2-75

The subsystem2ssc function lets you convert a subsystem consisting entirely of Simscape blocks
into a textual Simscape file. The function generates a composite component file based on the
subsystem configuration. If the subsystem being converted contains nested subsystems, then the
function generates several Simscape files, one for each subsystem.

Use this functionality to:

• Facilitate the authoring of composite components. When writing textual files, it can be difficult to
visualize the connections inside a composite component. This functionality lets you create a model
out of Simscape blocks, enclose it into a subsystem, and then convert this subsystem into a textual
composite component.

• Improve the usability of a complex subsystem, by reducing clutter and exposing only a few
relevant parameters at the top level.

• Share your models with customers without revealing the underlying intellectual property.

Suggested Workflows
To create a reusable composite component:

1 Model a physical component (such as a motor, valve, amplifier, and so on) using blocks from the
Simscape Foundation library, add-on product libraries, or custom blocks. Fine-tune the
parameters and troubleshoot the model, as necessary.

2 Select the blocks and connection lines that represent your physical component, and create a
subsystem from selection. For more information, see “Create Subsystems”.

The subsystem does not need to be masked. However, to expose underlying block parameters or
variables at the top level, you have to mask the subsystem and promote these parameters or
variables to the subsystem mask. For more information, see “Parameter Promotion” on page 2-
73.

3 Use the subsystem2ssc function to convert your subsystem into a textual composite
component. If the subsystem being converted contains nested subsystems, then the function
generates several Simscape files, one for each subsystem.

To enable model sharing without revealing the underlying intellectual property:

1 When converting the subsystem, use the subsystem2ssc function with a targetFolder
argument to place the file or files generated by the function into a target folder.

For example,

subsystem2ssc('ssc_dcmotor/DC Motor','./MotorsLibrary')

creates a file named DC_Motor.ssc and places it into the folder named MotorsLibrary.
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2 Create and place other motor models into the same target folder.
3 Protect the source files in the target folder by using the ssc_protect function.
4 Share the contents of the folder with other users or customers without revealing the underlying

source.

You can place generated files into a package folder and build a library by using the ssc_build or
ssc_mirror functions. However, if your subsystem contains nested subsystems, you have to edit the
subcomponent paths in the generated files manually to match your intended package structure.
Alternatively, you can use the Simscape Component blocks, which work with the flat hierarchy of the
target folder without modification.

Parameter Promotion
You can mark member block and subsystem parameters for promotion to the top level using the
subsystem mask. The subsystem2ssc function automatically generates the corresponding Simscape
code, similar to composite components. For more information, see “Parameterizing Composite
Components” on page 2-62.

When you deploy the generated composite file as a custom block, the block dialog box contains these
promoted parameters only.

This example shows how you can make the motor inertia modifiable at the DC Motor subsystem level,
and the effect on generated Simscape code and the resulting custom block mask:

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in the MATLAB
Command Window.

2 Right-click the DC Motor subsystem and, from the context menu, select Mask > Edit Mask.
3 Click the Parameters & Dialog tab. Use the Promote control option to promote the Inertia

parameter of the Inertia block to the subsystem mask. For more information, see “Promote
Underlying Parameters to Subsystem Mask”.
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Alternatively, you can use the Edit control option to add a parameter to the subsystem mask and
associate it with the Inertia parameter of the underlying Inertia block.

4 Convert the DC Motor subsystem into a Simscape component file and place this file in your
current working folder:

subsystem2ssc('ssc_dcmotor/DC Motor')

The function creates a file named DC_Motor.ssc in the current folder. Open the file in the
editor.
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component DC_Motor
  parameters
    inertia = {.01, 'cm^2*g'}; %Inertia
  end
  nodes
    C = foundation.mechanical.rotational.rotational;
    R = foundation.mechanical.rotational.rotational;
    V1 = foundation.electrical.electrical;
    V0 = foundation.electrical.electrical;
  end
  components(ExternalAccess = observe)
    Rotor_Resistance = foundation.electrical.elements.resistor(R = {3.9, 'Ohm'});
    Rotor_Inductance = foundation.electrical.elements.inductor(l = {1.2e-05, 'H'}, r = {0, 'Ohm'}, g = {1e-09, '1/Ohm'}, i_L = {value = {0, 'A'}, priority = priority.high});
    Rotational_Electromechanical_Converter = foundation.electrical.elements.rotational_converter(K = {.0006875493541569879, 's*V/rad'});
    Inertia = foundation.mechanical.rotational.inertia(inertia = inertia);
    Friction = foundation.mechanical.rotational.friction(brkwy_trq = {2e-05, 'm*N'}, brkwy_vel = {.03347, 'rad/s'}, Col_trq = {2e-05, 'm*N'}, visc_coef = {0, 'm*s*N/rad'});
  end
  connections
    connect(V0,Rotor_Resistance.p);
    connect(Rotational_Electromechanical_Converter.p,Rotor_Inductance.n);
    connect(V1,Rotational_Electromechanical_Converter.n);
    connect(Rotor_Inductance.p,Rotor_Resistance.n);
    connect(R,Friction.R);
    connect(R,Inertia.I);
    connect(R,Rotational_Electromechanical_Converter.R);
    connect(C,Friction.C);
    connect(C,Rotational_Electromechanical_Converter.C);
  end
end

Notice the top-level parameters block containing the inertia parameter.
5 If you now point a Simscape Component block to the DC_Motor.ssc source file, the block dialog

box contains a parameter named Inertia.

Limitations
The subsystem being converted must consist entirely of blocks authored in Simscape language, such
as blocks from the Simscape Foundation library, add-on product libraries, or custom blocks. Blocks
from the Simscape “Utilities” library are not authored in Simscape language, therefore:

• If the subsystem contains a Simscape Component block, then during the conversion this block is
replaced by its source component.

• Connection Port blocks are represented by the connect statements.
• Other blocks from the Utilities library (Solver Configuration, Simscape Bus, and so on) are not

allowed because they have no equivalent textual representation.

The subsystem being converted cannot contain multiple Simscape networks.

If the subsystem being converted contains nested subsystems, you might have to manually edit the
references to the generated files for nested subsystems when running ssc_build on the package.
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If you use blocks from Simscape libraries, keep the original subsystem used to generate the
composite component. Simscape language does not support forwarding tables or versioning. As a
result, if the underlying library blocks undergo changes in a future release, a textual composite
component generated from these blocks might stop working. If that happens, open the original
subsystem in the new release and rerun the conversion.

See Also
subsystem2ssc | components | connections | ssc_build | ssc_mirror | ssc_protect

More About
• “Declaring Member Components” on page 2-61
• “Parameterizing Composite Components” on page 2-62
• “Specifying Component Connections” on page 2-66
• “Building Custom Block Libraries” on page 4-25
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Defining Component Variants
In this section...
“Conditional Sections” on page 2-77
“Rules and Restrictions” on page 2-78
“Example” on page 2-80

Physical modeling often requires incremental modeling approach. It is a good practice to start with a
simple model, run and troubleshoot it, then add the desired special effects, like fluid compressibility
or fluid inertia. Another example is modeling a diode with different levels of complexity: linear, zener
diode, or exponential. Composite components often require conditional inclusion of a certain member
component and a flexible connection scheme.

Including different modeling variants within a single component requires applying control logic to
determine the model configuration. You achieve this goal by using conditional sections in a
component file.

Conditional Sections
A conditional section is a top-level section guarded by an if clause. Conditional sections are parallel
to other top-level sections of a component file, such as declaration or equations sections.

A conditional section starts with an if keyword and ends with an end keyword. It can have optional
elseif and else branches. The body of each branch of a conditional section can contain declaration
blocks, equations, structure sections, and so on, but cannot contain the setup function.

The if and elseif branches start with a predicate expression. If a predicate is true, the branch gets
activated. When all predicates are false, the else branch (if present) gets activated. The compiled
model includes elements (such as declarations, equations, and so on) from active branches only.

component MyComp
  [...]
  if Predicate1
    [...] % body of branch1
  elseif Predicate2
    [...] % body of branch2
  else 
    [...] % body of branch3
  end
  [...]
end

Unlike the if statements in the equations section, different branches of a conditional section can
have different variables, different number of equations, and so on. For example, you can have two
variants of a pipe, one that accounts for resistive properties only and the second that also models
fluid compressibility:
component MyPipe
  parameters
     fl_c = 0; % Model compressibility? (0 - no, 1 - yes)
  end
  [...] % other parameters, variables, branches
  if fl_c == 0
    equations
       % first set of equations, resistive properties only 
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    end
  else
    variables
       % additional variable declarations, needed to account for fluid compressibility 
    end
    equations
       % second set of equations, including fluid compressibility 
    end
  end
end

In this example, if the block parameter Model compressibility? (0 - no, 1 - yes) is set to 0, the first
set of equations gets activated and the block models only the resistive properties of the pipe. If the
block user changes the value of the parameter, then the else branch gets activated, and the
compiled model includes the additional variables and equations that account for fluid compressibility.

Note Enumerations are very useful in defining component variants, because they let you specify a
discrete set of acceptable parameter values. For an example of how this component can use
enumeration, see “Using Enumeration in Predicates” on page 3-17.

Rules and Restrictions
Nested conditional sections are allowed. For example:

component A
  parameters
     p1 = 0;
     p2 = 0;
     p3 = 0;
  end
  if p1 > 0
   [...]
     if p2 > 0
        [...]
     end
     if p3 > 0
        [...]
     end
   [...]
   end
end

Predicates must be parametric expressions, because the structure of a model must be fixed at
compile time and cannot change once the model is compiled. Using a variable in a predicate results in
a compile-time error:
component A
   [...]
   variables
     v = 0;
   end
   if v > 0  % error: v>0 is not a parametric expression because v is a variable
     [...]
   else
     [...]
   end
 end

Predicates may depend on parameters of the parent (enclosing) component. They may not depend,
directly or indirectly, on parameters of member (embedded) components or on domain parameters:
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component A
   parameters
     p = 1;
   end
   parameters(Access=private)
     pp = c.p;
   end
   components
     c = MyComp;
   end
   nodes
     n = MyDomain;
   end
   if p > 0  % ok
     [...]
   elseif c.p > 0 % error: may not depend on parameters of embedded component
     [...]
   elseif n.p > 0 % error: may not depend on domain parameters
     [...]
   elseif pp > 0 % error: pp depends on c.p 
     [...]
   end
 end

Accessibility of class members declared inside conditional sections is equivalent to private class
members (Access=private). They are not accessible from outside the component class, even if
their branch is active.

The scope of the class members declared inside a conditional section is the entire component class.
For example:

component A
   nodes
     p = foundation.electrical.electrical;
     n = foundation.electrical.electrical;
   end
   parameters
     p1 = 1;
   end
   if p1 > 0
     components
       r1 = MyComponentVariant1;
     end
   else
     components
       r1 = MyComponentVariant2;
     end
   end
   connections
     connect(p, r1.p);
     connect(n, r1.n);
   end
 end

However, using a conditional member outside the conditional section when the branch is not active
results in a compilation error:

component A
   nodes
     p = foundation.electrical.electrical;
     n = foundation.electrical.electrical;
   end
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   parameters
     p1 = 0;
   end
   if p1 > 0
     components
       r1 = MyComponentVariant1;
     end
   end
   connections
     connect(p, r1.p); % error if p1=0 and the predicate is false
   end
 end

Parameters that are referenced by predicates of conditional sections, directly and indirectly, must be
compile-time parameters. The setup function may not write to these parameters, for example:

component A
   parameters
     p1 = 1;
   end
   if p1 > 0  % p1 is a compile-time parameter 
     [...]
   else
     [...]
   end
   function setup
     tmp = p1; % ok to read from p1
     p1 = 10;  % error: may not write to p1 here
   end
 end

Example
This simple example shows a component containing two resistors. The resistors can be connected
either in series or in parallel, depending on the value of the control parameter:

component TwoResistors
  nodes
     p = foundation.electrical.electrical; % +:left
     n = foundation.electrical.electrical; % -:right
  end
  parameters
    p1 = {1, 'Ohm'};   % Resistor 1
    p2 = {1, 'Ohm'};   % Resistor 2
    ct = 0;            % Connection type (0 - series, 1 - parallel)
  end
  components(ExternalAccess=observe)
    r1 = foundation.electrical.elements.resistor(R=p1);
    r2 = foundation.electrical.elements.resistor(R=p2);
  end
  if ct == 0      % linear connection
    connections
      connect(p, r1.p);
      connect(r1.n, r2.p);
      connect(r2.n, n);
    end
  else          % parallel connection
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    connections
      connect(r1.p, r2.p, p);
      connect(r1.n, r2.n, n);
    end
  end
end

To test the correct behavior of the conditional section, point a Simscape Component block to this
component file. Place the block in a circuit with a 10V DC voltage source and a current sensor. With
the default parameter values, the resistors are connected in series, and the current is 5A.

If you change the value of the Connection type (0 - series, 1 - parallel) parameter to 1, the
resistors are connected in parallel, and the current is 20A.
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See Also

More About
• “Defining Conditional Visibility of Component Members” on page 2-83
• “Component Variants — Series RLC Branch” on page 2-85
• “Component Variants — Thermal Resistor” on page 2-87
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Defining Conditional Visibility of Component Members
The annotations section in a component file lets you control visibility of component members, such
as parameters and nodes, in block icons and dialog boxes. When you declare a component member,
the ExternalAccess attribute sets the visibility of the member in the user interface, that is, in block
dialog boxes, simulation logs, variable viewer, and so on. The annotations section serves a similar
purpose, but it is especially useful for block variants because it lets you define conditional visibility of
component members based on a predicate condition.

When you define component variants using conditional declarations, certain parameters, variables, or
ports can be used in one block variant but not in others. For example, you have a component that
models hydraulic pipelines with circular and noncircular cross sections. For a circular pipe, you need
to specify its internal diameter. For a noncircular pipe, you need to specify its hydraulic diameter and
pipe cross-sectional area. You can now use the annotations section to control the visibility of these
parameters in the block dialog box:
component MyPipe
  parameters
    circular  = true;             % Circular pipe?
    d_in      = { 0.01, 'm' };    % Pipe internal diameter
    area      = { 1e-4, 'm^2' };  % Noncircular pipe cross-sectional area
    D_h       = { 1.12e-2, 'm' }; % Noncircular pipe hydraulic diameter
  end
  if circular 
  % Hide inapplicable parameters
    annotations
       [area, D_h] : ExternalAccess=none;
    end
    equations
       % first set of equations, for circular pipe 
    end
  else
  % Hide inapplicable parameter
    annotations
       d_in : ExternalAccess=none;
    end
    equations
       % second set of equations, for noncircular pipe 
    end
  end
  [...] % other parameters, variables, branches, equations
end

Similar to other types of conditional declarations, a predicate of a conditional annotation must be a
parametric expression that evaluates to true or false. However, there is an additional restriction that
all the parameters used in the predicate of a conditional annotation must be either of type logical or
enumerated. In this example, the circular parameter is of type logical.

The annotations section lets you control visibility of the following component members:

• Parameters
• Variables
• Nodes
• Inputs
• Outputs

The annotations section also lets you specify conditional custom icons. This is especially useful if
the number of ports changes for different variants. For example:
component MyPipe
  parameters
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    thermal_variant = false; % Model thermal effects?
  end
  if thermal_variant 
  % Use icon with additional thermal port
    annotations
       Icon = 'pipe_thermal.jpg';
    end
  else
  % Use regular icon, with two fluid ports
    annotations
       Icon = 'pipe.jpg';
    end
  end
  [...] % Other parameters, variables, nodes, branches, equations
end

For more information on using custom block icons, see “Customize the Block Icon” on page 4-42.

Rules and Restrictions
The predicate of a conditional annotation must be a parametric expression that evaluates to true or
false. All the parameters used in the predicate of a conditional annotation must be either of type
logical or enumerated.

Member attributes must be uniquely defined, which means that the same member cannot be declared
more than once, with different values of the same attribute. The only exception to this rule is the use
of ExternalAccess attribute in the annotations section. You can declare a component member
with a certain value of ExternalAccess, and then specify a different ExternalAccess attribute
value in the annotations section, for example:
component MyPipe
  parameters
    circular  = true;             % Circular pipe?
  end
  parameters(ExternalAccess=none)
    d_in      = { 0.01, 'm' };    % Pipe internal diameter
  [...]
  end
  if circular 
  % Expose pipe diameter
    annotations
       d_in : ExternalAccess=modify;
    end
  [...] 

In case of conflict, the ExternalAccess attribute value specified in the annotations section
overrides the value specified for that member in the declaration section. For a complete component
example using this approach, see “Component Variants — Thermal Resistor” on page 2-87.

See Also

More About
• “Defining Component Variants” on page 2-77
• “Component Variants — Thermal Resistor” on page 2-87
• “Component Variants — Series RLC Branch” on page 2-85
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Component Variants — Series RLC Branch
The following example shows a series RLC component that implements a single resistor, inductor, or
capacitor, or a series combination of these elements. The component uses conditional sections to
implement the control logic.

import foundation.electrical.electrical;   % electrical domain class definition
import foundation.electrical.elements.*;   % electrical elements
component SeriesRLC
   nodes
     p = electrical; % +:left
     n = electrical; % -:right
   end
   nodes(Access=protected, ExternalAccess=none)
     rl = electrical; % internal node between r and l
     lc = electrical; % internal node between l and c
   end
   parameters
     R = {0, 'Ohm'};
     L = {0, 'H'};
     C = {inf, 'F'};
   end
   if R > 0
     components
       r = resistor(R=R);
     end
     connections
       connect(p, r.p);
       connect(r.n, rl);
     end
   else
     connections
       connect(p, rl); % short circuit p--rl
     end
   end
   if L > 0
     components
       l = inductor(l=L);
     end
     connections
       connect(rl, l.p);
       connect(l.n, lc);
     end
   else
     connections
       connect(rl, lc); % short circuit rl--lc
     end
   end
   if value(C, 'F') < inf
     components
       c = capacitor(c=C);
     end
     connections
       connect(lc, c.p);
       connect(c.n, n);
     end
   else
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     connections
       connect(lc, n); % short circuit lc--n
     end
   end
 end

The R, L, and C parameters are initialized to 0, 0, and inf, respectively. If the block user specifies a
nonzero resistance, nonzero impedance, or finite capacitance, the appropriate branch gets activated.
The active branch declares the appropriate member component and connects it in series. Each of the
else clauses short-circuits the appropriate nodes.

Internal nodes rl and lc, which serve to connect the member components, should not be accessible
from outside the component. Set their Access attribute to protected or private. Their
ExternalAccess attribute is none, so that these nodes are not visible on the block icon.

See Also

More About
• “Defining Component Variants” on page 2-77
• “Parameterizing Composite Components” on page 2-62
• “Specifying Component Connections” on page 2-66
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Component Variants — Thermal Resistor
The following example shows a linear resistor with an optional thermal port. The component uses
conditional sections to implement the control logic. The annotations sections within the conditional
branches selectively expose or hide appropriate ports, parameters, and variables based on the value
of the control parameter. The two block variants have a different number of ports, and therefore the
custom block icon also changes accordingly.

component CondResistor
% Linear Resistor with Optional Thermal Port
% If "Model thermal effects" is set to "Off", the block represents a
% linear resistor. The voltage-current (V-I) relationship is V=I*R,
% where R is the constant resistance in ohms.
%
% If "Model thermal effects" is set to "On", the block represents a
% resistor with a thermal port. The resistance at temperature T1 is given by
% R(T) = R0*(1+alpha(T1-T0)), where R0 is the Nominal resistance at the
% Reference temperature T0, and alpha is the Temperature coefficient.

nodes
    p = foundation.electrical.electrical; % +:left
    n = foundation.electrical.electrical; % -:right
    H = foundation.thermal.thermal;       % H:left
end

parameters
    thermal_effects = simscape.enum.onoff.off; % Model thermal effects
end

parameters(ExternalAccess=none)
    R = { 1, 'Ohm' };         % Nominal resistance
    T0 = {300,'K'};           % Reference temperature
    alpha = {50e-6,'1/K'};    % Temperature coefficient
    tc = {10,'s'};            % Thermal time constant
    K_d = {1e-3,'W/K'};       % Dissipation factor
end

variables(ExternalAccess=none)
    i = { 0, 'A' };                                         % Current
    v = { 0, 'V' };                                         % Voltage
    T1 = {value = {300,'K'}, priority = priority.high};  % Temperature
end

branches
    i : p.i -> n.i;
end

equations
    v == p.v - n.v;
end

if thermal_effects == simscape.enum.onoff.off
    annotations
        % Show non-thermal settings
        Icon = 'custom_resistor.png';
        [R, i, v] : ExternalAccess=modify;
        % Hide thermal node
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        H : ExternalAccess=none;
    end
    connections
        connect(H, *); % Connect hidden thermal node to reference
    end
    equations
        R*i == v;
        T1 == T0;    % Temperature is constant
    end

else
    annotations
        % Show thermal settings
        Icon = 'custom_resistor_thermal.png';
        [T1, T0, alpha, tc, K_d, H] : ExternalAccess=modify;
    end

    % Add heat flow + thermal equations
    variables(Access=private)
        Q = { 0, 'J/s' }; % Heat flow
    end
    branches
        Q : H.Q -> *
    end
    equations
        T1 == H.T;
        let
            mc = tc*K_d; % mc in Q = m*c*dT
            % Calculate R(T), protecting against negative values
            Rdem = R*(1+alpha*(T1-T0));
            R_T = if Rdem > 0, Rdem else {0,'Ohm'} end;
        in
            R_T*i == v; % Electrical equation
            mc * T1.der == Q + R_T*i*i; % Thermal equation
        end
    end

end
end

The component initially declares all the optional parameters and variables with the ExternalAccess
attribute set to none, and then exposes them selectively by using the conditional annotations
sections. The opposite method, of hiding inapplicable members, is also valid, but this approach is
more easily scalable when you have multiple component configurations.

If the control parameter, Model thermal effects, is set to Off, the block represents a linear resistor.
The only exposed block parameter is Nominal resistance, the Variables tab lets you set targets for
Current and Voltage, and the block icon has two ports, + and -.
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If the Model thermal effects parameter is set to On, the block represents a resistor with a thermal
port, with temperature-dependent resistance. The block parameters, variables, ports, and the custom
block icons change accordingly.
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See Also

More About
• “Defining Component Variants” on page 2-77
• “Defining Conditional Visibility of Component Members” on page 2-83
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Mechanical Component — Spring
The following file, spring.ssc, implements a component called spring.

The declaration section of the component contains:

• Two rotational nodes, r and c (for rod and case, respectively)
• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate
• Through and Across variables, torque t and angular velocity w, to be connected to the rotational

domain Through and Across variables later in the file
• Internal variable theta, with a default value of 0 rad, specifying relative angle, that is,

deformation of the spring

The branches section establishes the relationship between the component Through variable and the
component nodes (and therefore the domain Through variable). The t : r.t -> c.t statement
indicates that the torque through the spring acts from node r to node c.

The equation section starts with an assert construct, which checks that the spring rate is greater
than zero. If the block parameter is set incorrectly, the assert triggers a run-time error.

The first equation, w == r.w - c.w, establishes the relationship between the component Across
variable and the component nodes (and therefore the domain Across variable). It defines the angular
velocity across the spring as the difference between the node angular velocities.

The following two equations define the spring action:

• t = k * theta, that is, torque equals spring deformation times spring rate
• w = theta.der, that is, angular velocity equals time derivative of spring deformation

component spring
  nodes
    r = foundation.mechanical.rotational.rotational;
    c = foundation.mechanical.rotational.rotational;
  end
  parameters
    k = { 10, 'N*m/rad' };
  end
  variables
    theta = { 0, 'rad' };
    t = { 0, 'N*m' };        % torque through
    w = { 0, 'rad/s' };      % velocity across
  end
  branches
    t : r.t -> c.t; % torque through from node r to node c
  end
  equations
    assert(k>0)     % spring rate must be greater than zero
    w == r.w - c.w; % velocity across between node r and node c
    t == k * theta;
    w == theta.der;
  end
end
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Electrical Component — Ideal Capacitor
The following file, ideal_capacitor.ssc, implements a component called ideal_capacitor.

The declaration section of the component contains:

• Two electrical nodes, p and n, for + and – terminals, respectively.
• One parameter, C, with a default value of 1 F, specifying the capacitance.
• Through and Across variables, current i and voltage v, to be connected to the electrical domain

Through and Across variables later in the file.

Variable v is declared with high initialization priority, to ensure the initial voltage of 0 V.

The branches section establishes the relationship between the component Through variable and the
component nodes (and therefore the domain Through variable). The i : p.i -> n.i statement
indicates that the current through the capacitor flows from node p to node n.

The equation section starts with an assert construct, which checks that the capacitance value is
greater than zero. If the block parameter is set incorrectly, the assert triggers a run-time error.

The first equation, v == p.v - n.v, establishes the relationship between the component Across
variable and the component nodes (and therefore the domain Across variable). It defines the voltage
across the capacitor as the difference between the node voltages.

The second equation defines the capacitor action: I = C*dV/dt, that is, output current equals
capacitance multiplied by the time derivative of the input voltage.
component ideal_capacitor
% Ideal Capacitor
% Models an ideal (lossless) capacitor. The output current I is related
% to the input voltage V by I = C*dV/dt where C is the capacitance.

  nodes
    p = foundation.electrical.electrical; % +:top
    n = foundation.electrical.electrical; % -:bottom
  end

  parameters
    C = { 1, 'F' };   % Capacitance
  end

  variables
    i = { 0, 'A' }; % Current
    v = {value = { 0, 'V' }, priority = priority.high}; % Voltage
  end

  branches
    i : p.i -> n.i; % Current through from node p to node n
  end

  equations
    assert(C > 0)
    v == p.v - n.v; % Voltage across between node p and node n
    i == C*v.der;   % Equation defining the capacitor action
  end
end
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No-Flow Component — Voltage Sensor
The following file, voltage_sensor.ssc, implements a component called voltage_sensor. An
ideal voltage sensor has a very large resistance, so there is no current flow through the sensor.
Therefore, declaring a Through variable, as well as writing branches and equation statements for it,
is unnecessary.

The declaration section of the component contains:

• Two electrical nodes, p and n (for + and – terminals, respectively)
• An Across variable, voltage v1, to be connected to the electrical domain later in the file

Note that a Through variable (current ) is not declared, and there is no branches section.

In the equation section, the first equation, v == p.v - n.v, establishes the relationship between
the component Across variable, voltage v1, and the component nodes (and therefore the domain
Across variable at these nodes). It defines the voltage across the sensor as the difference between the
node voltages.

The second equation defines the voltage sensor action:

• V == v1, that is, output voltage equals the voltage across the sensor nodes

component voltage_sensor
% Voltage Sensor
% The block represents an ideal voltage sensor. There is no current
% flowing through the component, therefore it is unnecessary to
% declare a Through variable (i1), use a branches section, or
% create an equation statement for current (such as i1 == 0).
%
% Connection V is a physical signal port that outputs voltage value.

  outputs
    V = { 0.0, 'V' }; % V:bottom
  end

  nodes
    p = foundation.electrical.electrical; % +:top
    n = foundation.electrical.electrical; % -:bottom
  end

  variables
    v1 = { 0, 'V' };
  end

  equations
    v1 == p.v - n.v;
    V == v1;
  end

end
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Grounding Component — Electrical Reference
The easiest way to implement a grounding component is to use a connection to an implicit reference
node. For an example of a component that provides an electrical ground to a circuit, see the source
for the Electrical Reference block in the Foundation library:

component reference
% Electrical Reference :0.5
% Electrical reference port. A model must contain at least one
% electrical reference port (electrical ground).

% Copyright 2005-2016 The MathWorks, Inc.

nodes
    V = foundation.electrical.electrical; % :top
end

connections
    connect(V, *);
end

end

For more information on component connections and the implicit reference node syntax, see
“Connections to Implicit Reference Node” on page 2-68.

The following file, elec_reference.ssc, shows how to implement a behavioral model of an
electrical reference. This component has one node, where the voltage equals zero. It also declares a
current variable, makes it incident to the component node using the branches section, and does not
specify any value for it in the equation section. Therefore, it can take on any value and handle the
current flowing into or out of the reference node.

The declaration section of the component contains:

• One electrical node, V
• A Through variable, current i, to be connected to the electrical domain later in the file. Note that

there is no need to declare an Across variable (voltage) because this is a grounding component.

The branches section establishes the relationship between the component Through variable, current
i, and the component nodes (and therefore the domain Through variable). The i : V.i -> *
statement indicates that the current flows from node V to the reference node, indicated as *.

The equation section of the component contains the equation that defines the grounding action:

• V.v == 0, that is, voltage at the node equals zero

component elec_reference
% Electrical Reference
% Electrical reference port. A model must contain at least one
% electrical reference port (electrical ground).

  nodes
    V = foundation.electrical.electrical; % :top
  end

  variables
    i = { 0, 'A' };
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  end

  branches
    i : V.i -> *;
  end

  equations
    V.v == 0;
  end

end

See Also

More About
• “Specifying Component Connections” on page 2-66
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Composite Component — DC Motor
In the “Permanent Magnet DC Motor” example, the DC Motor block is implemented as a masked
subsystem.

The following code implements the same model by means of a composite component, called DC
Motor. The composite component uses the components from the Simscape Foundation library as
building blocks, and connects them as shown in the preceding block diagram.
component DC_Motor
% DC Motor
% This block models a DC motor with an equivalent circuit comprising a
% series connection of a resistor, inductor, and electromechanical converter.
% Default values are as for the DC Motor Simscape example, ssc_dcmotor.

nodes
    p = foundation.electrical.electrical;               % +:left
    n = foundation.electrical.electrical;               % -:left
    R = foundation.mechanical.rotational.rotational;    % R:right
    C = foundation.mechanical.rotational.rotational;    % C:right
end

parameters
    rotor_resistance    = { 3.9, 'Ohm' };           % Rotor Resistance
    rotor_inductance    = { 12e-6, 'H' };           % Rotor Inductance
    motor_inertia       = { 0.01, 'g*cm^2' };       % Inertia
    breakaway_torque    = { 0.02e-3, 'N*m' };       % Breakaway friction torque
    coulomb_torque      = { 0.02e-3, 'N*m' };       % Coulomb friction torque
    viscous_coeff       = { 0, 'N*m*s/rad' };       % Viscous friction coefficient
    breakaway_velocity  = { 0.1, 'rad/s' };         % Breakaway friction velocity
    back_emf_constant   = { 0.072e-3, 'V/rpm' };    % Back EMF constant
end

components(ExternalAccess=observe)
    rotorResistor                  = foundation.electrical.elements.resistor(R = rotor_resistance);
    rotorInductor                  = foundation.electrical.elements.inductor(l = rotor_inductance);
    rotationalElectroMechConverter = foundation.electrical.elements.rotational_converter(K = ...
                                        back_emf_constant);
    friction                       = foundation.mechanical.rotational.friction(brkwy_trq = ...
                                        breakaway_torque, Col_trq = coulomb_torque, ...
                                        visc_coef = viscous_coeff, brkwy_vel = breakaway_velocity);
    motorInertia                   = foundation.mechanical.rotational.inertia(inertia = motor_inertia);
end

connections
    connect(p, rotorResistor.p);
    connect(rotorResistor.n, rotorInductor.p);
    connect(rotorInductor.n, rotationalElectroMechConverter.p);
    connect(rotationalElectroMechConverter.n, n);
    connect(rotationalElectroMechConverter.R, friction.R, motorInertia.I, R);
    connect(rotationalElectroMechConverter.C, friction.C, C);
end

end

The declaration section of the composite component starts with the nodes section, which defines the
top-level connection ports of the resulting composite block:
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• Two electrical conserving ports, + and -, on the left side of the block
• Two mechanical rotational conserving ports, R and C, on the right side of the block

The parameters declaration block lists all the parameters that will be available in the composite
block dialog box.

The components block declares all the member (constituent) components, specifying their complete
names starting from the top-level package directory. This example uses the components from the
Simscape Foundation library:

• Resistor
• Inductor
• Rotational Electromechanical Converter
• Rotational Friction
• Inertia

The components block also links the top-level parameters, declared in the parameters declaration
block, to the parameters of underlying member components. For example, the Rotor Resistance
parameter of the composite block (rotor_resistance) corresponds to the Resistance parameter
(R) of the Resistor block in the Foundation library.

You do not have to link all the parameters of member blocks to top-level parameters. For example, the
Rotational Friction block in the Foundation library has the Transition approximation coefficient
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parameter, which is not mapped to any parameter at the top level. Therefore, the composite model
always uses the default value of this parameter specified in the Rotational Friction component, 10
rad/s.

The connections block defines the connections between the nodes (ports) of the member
components, and their connections to the top-level ports of the resulting composite block, declared in
the nodes declaration block of the composite component:

• Positive electrical port p of the composite component is connected to the positive electrical port p
of the Resistor

• Negative electrical port n of the Resistor is connected to the positive electrical port p of the
Inductor

• Negative electrical port n of the Inductor is connected to the positive electrical port p of the
Rotational Electromechanical Converter

• Negative electrical port n of the Rotational Electromechanical Converter is connected to the
negative electrical port n of the composite component

• Mechanical rotational port R of the composite component is connected to the following mechanical
rotational ports: R of the Rotational Electromechanical Converter, R of the Rotational Friction, and
I of the Inertia

• Mechanical rotational port C of the composite component is connected to the following mechanical
rotational ports: C of the Rotational Electromechanical Converter and C of the Rotational Friction

These connections are the textual equivalent of the graphical connections in the preceding block
diagram.

See Also

More About
• “About Composite Components” on page 2-60
• “Declaring Member Components” on page 2-61
• “Parameterizing Composite Components” on page 2-62
• “Specifying Initial Target Values for Member Variables” on page 2-64
• “Specifying Component Connections” on page 2-66
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Working with Domain Parameters
In this section...
“Declaring Domain Parameters” on page 2-100
“Propagation of Domain Parameters” on page 2-100
“Source Components” on page 2-100
“Propagating Components” on page 2-101
“Blocking Components” on page 2-101
“Custom Library with Propagation of Domain Parameters” on page 2-102

Declaring Domain Parameters
Similar to a component parameter, you declare each domain parameter as a value with unit on page
2-5. However, unlike component parameters, the main purpose of domain parameters is to propagate
the same parameter value to all or some of the components connected to the domain.

Propagation of Domain Parameters
The purpose of domain parameters is to propagate the same parameter value to all or some of the
components connected to the domain. For example, this hydraulic domain contains one Across
variable, p, one Through variable, q, and one parameter, t.
domain t_hyd
  variables
    p = { 1e6, 'Pa' }; % pressure
  end
  variables(Balancing = true)
    q = { 1e-3, 'm^3/s' }; % flow rate
  end
  parameters
    t = { 303, 'K' }; % fluid temperature
  end
end

All components with nodes connected to this domain will have access to the fluid temperature
parameter t. The component examples in the following sections assume that this domain file,
t_hyd.ssc, is located in a package named +THyd.

When dealing with domain parameters, there are three different types of components. There are
some components that provide the domain parameter values used in the larger model, there are some
that simply propagate the parameters, and there are some that do not propagate parameters.

For a complete example of building a custom block library based on this domain definition and using
propagation of domain parameters in a simple circuit, see “Custom Library with Propagation of
Domain Parameters” on page 2-102.

Source Components
Source components provide a way to modify the domain parameter values. You declare a component
parameter, and then use direct assignment to a domain parameter in the component node
declaration. This assignment establishes the connection, which lets the parameter of the source
component control the domain parameter value.
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The following is an example of a source component, connected to the hydraulic domain t_hyd,
defined in “Propagation of Domain Parameters” on page 2-100. This component provides the value of
the temperature parameter to the rest of the model.
component  hyd_temp
% Hydraulic Temperature
%      Provide hydraulic temperature to the rest of the model
  parameters
    t = { 333, 'K' };  % Fluid temperature
  end
  nodes
    a = THyd.t_hyd(t=t); % t_hyd node with direct parameter assignment
  end
end

When you generate a Simscape block from this component file, the block dialog box will have a
parameter labelled Fluid temperature. You can then use it to enter the temperature value for the
hydraulic fluid used in the model. You cannot have more than one block controlling the same domain
parameter connected to a circuit, unless different segments of the circuit are separated by a blocking
component.

Propagating Components
The default setting for the Propagation component attribute is propagates. Most components use
this setting. If a component is configured to propagate its domain parameters, then all public nodes
connected to this domain have the same set of domain parameters. These parameters are accessible
in equations and other sections of the component file.

The following is an example of a propagating component h_temp_sensor, connected to the
hydraulic domain t_hyd, defined in “Propagation of Domain Parameters” on page 2-100. It outputs
the fluid temperature as a physical signal T. This example shows how you can access domain
parameters in the equation section of a component.
component h_temp_sensor
% Hydraulic Temperature Sensor
%      Measure hydraulic temperature
  outputs
    T = { 0, 'K' }; % T:right
  end
  nodes
    a = THyd.t_hyd; % t_hyd node
  end
  equations
    T == a.t; % access parameter from node in equations
  end
end

Blocking Components
Blocking components are those components that do not propagate domain parameters. These
components have their Propagation attribute set to blocks. If your model requires different values
of a domain parameter in different segments of the same circuit, use blocking components to
separate these segments and connect each segment to its own source component. For more
information, see “Attribute Lists” on page 2-105.
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Custom Library with Propagation of Domain Parameters
The following example shows how you can test propagation of domain parameters by putting together
a simple circuit. In this example, you will:

• Create the necessary domain and component files and organize them in a package. For more
information, see “Organizing Your Simscape Files” on page 4-25.

• Build a custom block library based on these Simscape files. For more information, see “Converting
Your Simscape Files” on page 4-26.

• Use these custom blocks to build a model and test propagation of domain parameters.

To complete the tasks listed above, follow these steps:

1 In a directory located on the MATLAB path, create a directory called +THyd. This is your package
directory, where you store all Simscape files created in the following steps.

2 Create the domain file t_hyd.ssc, as described in “Propagation of Domain Parameters” on page
2-100.
domain t_hyd
  variables
    p = { 1e6, 'Pa' }; % pressure
  end
  variables(Balancing = true)
    q = { 1e-3, 'm^3/s' }; % flow rate
  end
  parameters
    t = { 303, 'K' }; % fluid temperature
  end
end

3 Create the component file hyd_temp.ssc, as described in “Source Components” on page 2-100.
This component provides the value of the temperature parameter to the rest of the model.
component  hyd_temp
% Hydraulic Temperature
%      Provide hydraulic temperature to the rest of the model
  parameters
    t = { 333, 'K' };  % Fluid temperature
  end
  nodes
    a = THyd.t_hyd(t=t); % t_hyd node with direct parameter assignment
  end
end

4 Create the component file h_temp_sensor.ssc, as described in “Propagating Components” on
page 2-101. This component measures the value of the temperature parameter and outputs it as
a physical signal.
component h_temp_sensor
% Hydraulic Temperature Sensor
%      Measure hydraulic temperature
  outputs
    T = { 0, 'K' }; % T:right
  end
  nodes
    a = THyd.t_hyd; % t_hyd node
  end
  equations
    T == a.t; % access parameter from node in equations
  end
end
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5 In order to create a working circuit, you will need a reference block corresponding to the domain
type, as described in “Grounding Rules”. Create a reference component for your t_hyd domain,
as follows (name the component h_temp_ref.ssc):

component h_temp_ref
% Hydraulic Temperature Reference
%      Provide reference for thermohydraulic circuits
  nodes
    a = THyd.t_hyd; % t_hyd node
  end
  connections
    connect(a, *);
  end
end

6 You can optionally define other components referencing the t_hyd domain, but this basic set of
components is enough to create a working circuit. Now you need to build a custom block library
based on these Simscape files. To do this, at the MATLAB command prompt, type:

ssc_build THyd;

7 This command generates a file called THyd_lib in the directory that contains your +THyd
package. Before using this library, restart MATLAB to register the new domain. Then open the
custom library by typing:

THyd_lib 

8 Create a new Simscape model. To do this, type:

ssc_new

This command creates a new model, prepopulated with the following blocks:

9 Delete the Simulink-PS Converter block, because our model is not going to have any Simulink
input signals.

10 Drag the Hydraulic Temperature, Hydraulic Temperature Sensor, and Hydraulic Temperature
Reference blocks from THyd_lib and connect them as follows:
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11 Simulate the model and notice that the scope displays the value of the domain temperature
parameter, as it is defined in the hyd_temp.ssc file, 333 K.

12 Double-click the Hydraulic Temperature block. Change the value of the Fluid temperature
parameter to 363 K.

13 Simulate the model again and notice that the scope now displays the new value of the domain
temperature parameter.
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Attribute Lists

In this section...
“Attribute Types” on page 2-105
“Model Attributes” on page 2-105
“Member Attributes” on page 2-106

Attribute Types
The attributes appear in an AttributeList, which is a comma separated list of pairs, as defined in the
MATLAB class system grammar. Simscape language distinguishes between two types of attributes:
model attributes and member attributes.

Model Attributes
Model attributes are applicable only to model type component.

Attribute Values Default Model Classes Description
Propagation propagates

blocks
source (not
recommended)

propagates component Defines the domain data propagation
of the component. By default,
components propagate domain data,
such as domain parameter values. If
your model requires different values
of a domain parameter in different
segments of the same circuit, use
blocks to designate a blocking
component.

Using the source value, along with
the setup function, is no longer
recommended; instead, use direct
assignment to a domain parameter in
the component node declaration. See
“Working with Domain Parameters” on
page 2-100.

Hidden true
false

false component Defines the visibility of the entire
component. This dictates whether the
component shows up in a generated
library or report.

Component model attributes apply to the entire model. For example:

component (Propagation = blocks) Separator
  % component model goes here
end

Here, Propagation is a model attribute.
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Member Attributes
Member attributes apply to a whole declaration block.

Attribute Values Default Member
Classes

Description

Access public
private
protected

public all Defines the read and write access
of members. Public (the default) is
the most permissive access level.
There are no restrictions on
accessing public members. Private
members are only accessible to the
instance of the component model
and not to external clients.
Protected members of a base class
are accessible only to subclasses.

ExternalAccess modify
observe
none

Depends on the
value of Access
attribute: for
public, the
default is
modify, for
private and
protected, the
default is
observe

all Sets the visibility of the member in
the user interface, that is, in block
dialog boxes, simulation logs,
variable viewer, and so on:

• modify — The member is
modifiable in the block dialogs
and visible in the logs and
viewer.

• observe — The member is
visible in the logs and viewer,
but not modifiable, and
therefore not visible, in block
dialogs.

• none — The member is visible
nowhere outside the language.

Balancing true
false

false variables If set to true, declares Through
variables for a domain. You can set
this attribute to true only for
model type domain. See “Declare
Through and Across Variables for a
Domain” on page 2-6.

Event true
false

false variables If set to true, declares event
variables for a component. You can
set this attribute to true only for
model type component. See “Event
Variables” on page 2-54.

Conversion absolute
relative

absolute parameters
variables

Defines how the parameter or
variable units are converted for use
in equations, intermediates, and
other sections. See “Parameter
Units” on page 2-13.
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Attribute Values Default Member
Classes

Description

MATLABEvaluation default
compiletime

default parameters
variables

If a member declaration contains a
declaration function that does not
support code generation, set this
attribute to compiletime. The
declaration function is then
evaluated only at compile time, and
all the function input parameters
are marked as compile-time only.
See “Declaration Functions” on
page 3-21.

The attribute list for the declaration block appears after MemberClass keyword. For example:

parameters (Access = public,ExternalAccess = observe)
  % parameters go here
end

Here, all parameters in the declaration block are externally writable in language, but they will not
appear in the block dialog box.

Specifying Member Accessibility

The two attributes defining member accessibility act in conjunction. The default value of the
ExternalAccess attribute for a member depends on the value of the Access attribute for that
member.

Access Default ExternalAccess
public modify
protected observe
private observe

You can modify the values of the two attributes independently from each other. However, certain
combinations are prohibited. The compiler enforces the following rules:

• Members in the base class with Access=private are forced to have ExternalAccess=none, to
avoid potential collision of names between the base class and the derived class.

• When Access is explicitly set to private or protected, it does not make sense to explicitly set
ExternalAccess=modify . In this situation, the compiler issues a warning and remaps
ExternalAccess to observe.
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Subclassing and Inheritance
Subclassing allows you to build component models based on other component models by extension.
Subclassing applies only to component models, not domain models. The syntax for subclassing is
based on the MATLAB class system syntax for subclassing using the < symbol on the declaration line
of the component model:

component MyExtendedComponent < PackageName.MyBaseComponent
  % component implementation here
end

By subclassing, the subclass inherits all of the members (such as parameters, variables, nodes) from
the base class and can add members of its own. When using the subclass as an external client, all
public members of the base class are available. All public and protected members of the base
class are available to the events, equation, structure, and other sections of the subclass. The subclass
may not declare a member with the same identifier as a public or protected member of the base
class.

The setup function of the base class is executed before the setup function of the subclass.

Note

• Starting in R2019a, using setup is not recommended. Other constructs available in Simscape
language let you achieve the same results without compromising run-time capabilities. For more
information, see “setup is not recommended” on page 5-69.

The equations of both the subclass and the base class are included in the overall system of equations.

For example, you can create the base class ElectricalBranch.ssc, which defines an electrical
branch with positive and negative external nodes, initial current and voltage, and relationship
between the component variables and nodes (and therefore, connects the component variables with
the Through and Across domain variables). Such a component is not very useful as a library block, so
if you do not want the base class to appear as a block in a custom library, set the Hidden=true
attribute value:

component (Hidden=true) ElectricalBranch
  nodes
    p = foundation.electrical.electrical; % +:left
    n = foundation.electrical.electrical; % +:right
  end
  variables
    i = { 0, 'A' };
    v = { 0, 'V' };
  end
  branches
    i : p.i -> n.i;
  end
  equations
    v == p.v - n.v;
  end
end
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If, for example, your base class resides in a package named +MyElectrical, then you can define the
subclass component Capacitor.ssc as follows:

component Capacitor < MyElectrical.ElectricalBranch
% Ideal Capacitor
  parameters
    c = { 1, 'F' };
  end
  equations
      assert(c>0, 'Capacitance must be greater than zero');    
      i == c * v.der;
  end
end

The subclass component inherits the p and n nodes, the i and v variables with initial values, and the
relationship between the component and domain variables from the base class. This way, the
Capacitor.ssc file contains only parameters and equations specific to the capacitor.

Overriding Base Class Members in Derived Classes
You can override certain members of base class in derived classes. For example, you can:

• Override the default values of base class parameters
• Override the default initial values, priorities, and other attributes of base class variables
• Override intermediates declared in the base class
• Override annotation attributes declared in the base class, such as Icon or ExternalAccess of

base class members

You cannot override the Access attribute of base class members. For example, if a base class
member is declared as protected, it stays protected in all derived classes.

You cannot override values or attributes of base class members declared as private.

Annotation override can be conditional, except for annotation types that do not accept conditional
definition, such as Side. If the active branch does not explicitly define an annotation override, or if
none of the branches are active and an else branch is not explicitly defined, the annotation inherits
the attribute from the closest base class in the hierarchy.

In this example, the subclass component Sub:

• Overrides the value of the base class parameter bp1.
• Overrides the value and priority of the base class variable bv1.
• Overrides the base class intermediate bm1.
• Conditionally overrides the block icon and the visibility of the base class parameter bp2 based on

the value of the control parameter cp1.

component Base
  parameters
    bp1 = 1;
    bp2 = 2;
  end
  variables
    bv1 = 0;
  end
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  intermediates
    bm1 = 2*bv1+bp1;
  end
  annotations
    Icon = 'file1.jpg';
    bp1 : ExternalAccess = modify;
    bp2 : ExternalAccess = observe;
  end  
end
 
component Sub < Base(bp1 = 0.1,...
             bv1.value = 1.1, ...
             bv1.priority = priority.high, ...
             bm1 = 2*bv1+v1+p1)
             % override base class parameters, variables, intermediates
  parameters
    p1 = 1;
    cp1 = true;
  end
  variables
    v1 = 0;
  end
  if cp1
    annotations
      Icon = 'file2.jpg';            % override the block icon
      bp2 : ExternalAccess = modify; % override bp2 visibility to 'modify'
    end
  else
    annotations
      bp2 : ExternalAccess = none;   % override bp2 visibility to 'none'
    end
  end
  equations
    v1 == 2*p1+bp2
  end
end

Limitations for overriding default values of parameters and variables from the base class:

• You cannot reference other parameters from the base class. For example, when overriding the
value of bp1, you cannot reference bp2.

• You cannot reference conditional parameters.
• If the subclass is a composite component, you cannot reference parameters from its member

components.
• Parameters used in overriding parameters and variables from the base class cannot be run-time
configurable.

These limitations do not apply to intermediates. In the example, parameter p1 can be run-time
configurable because it is used in overriding the intermediate bm1. However, if it was overriding the
base class parameter bp1 (bp1 = p1), then p1 would be restricted to compile-time only.

See Also
annotations

More About
• “Defining Conditional Visibility of Component Members” on page 2-83
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Importing Domain and Component Classes
You must store Simscape model files (domains and components) in package directories, as described
in “Organizing Your Simscape Files” on page 4-25. Like the MATLAB class system, each package
defines a scope (or namespace). You can uniquely identify a model class name and access it using a
fully qualified reference. For example, you can access the domain model class electrical using
foundation.electrical.electrical.

In composite components, class member declarations include user-defined types, that is, component
classes. If you do not use import statements, accessing component class names from a different
scope always requires a fully qualified reference. For example, the Foundation library Resistor block
is:

foundation.electrical.elements.resistor

An import mechanism provides a convenient means to accessing classes defined in different scopes,
with the following benefits:

• Allows access to model class names defined in other scopes without a fully qualified reference
• Provides a simple and explicit view of dependencies on other packages

There are two types of syntax for the import statement. One is a qualified import, which imports a
specific package or class:

import package_or_class;

The other one is an unqualified import, which imports all subpackages and classes under the
specified package:

import package.*;

The package or class name must be a full path name starting from the library root (the top-level
package directory name) and containing subpackage names as necessary.

You must place import statements at the beginning of a Simscape file. The scope of imported names
is the entire Simscape file, except the setup section. For example, if you use the following import
statement:

import foundation.electrical.elements.*;

at the beginning of your component file, you can refer to the Foundation library Resistor block
elsewhere in this component file directly by name:

rotorResistor = resistor(R = rotor_resistance);

See the import on page 5-44 reference page for syntax specifics. For an example of using
import statements in a custom component, see the “Transmission Line” example. To view the
Simscape file, open the example, then double-click Open the transmission line component
library. In the TransmissionLine_lib window, double-click the T-Section Transmission Line block and
then, in the block dialog box, click Source code.
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See Also

Related Examples
• “Composite Component Using import Statements” on page 2-113
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Composite Component Using import Statements
This example shows how you can use import statements to implement a composite component
equivalent to the one described in “Composite Component — DC Motor” on page 2-97 . The two
components are identical, but, because of the use of the import statements, the amount of typing in
the nodes and components sections is significantly reduced.
import foundation.electrical.electrical;   % electrical domain class definition
import foundation.electrical.elements.*;   % electrical elements
import foundation.mechanical.rotational.*; % mechanical rotational domain and elements
component DC_Motor1
% DC Motor1
% This block models a DC motor with an equivalent circuit comprising a
% series connection of a resistor, inductor, and electromechanical converter.
% Default values are as for the DC Motor Simscape example, ssc_dcmotor.

nodes
    p = electrical;               % +:left
    n = electrical;               % -:left
    R = rotational;               % R:right
    C = rotational;               % C:right
end

parameters
    rotor_resistance    = { 3.9, 'Ohm' };           % Rotor Resistance
    rotor_inductance    = { 12e-6, 'H' };           % Rotor Inductance
    motor_inertia       = { 0.01, 'g*cm^2' };       % Inertia
    breakaway_torque    = { 0.02e-3, 'N*m' };       % Breakaway friction torque
    coulomb_torque      = { 0.02e-3, 'N*m' };       % Coulomb friction torque
    viscous_coeff       = { 0, 'N*m*s/rad' };       % Viscous friction coefficient
    breakaway_velocity  = { 0.1, 'rad/s' };         % Breakaway friction velocity
    back_emf_constant   = { 0.072e-3, 'V/rpm' };    % Back EMF constant
end

components(ExternalAccess=observe)
    rotorResistor                  = resistor(R = rotor_resistance);
    rotorInductor                  = inductor(l = rotor_inductance);
    rotationalElectroMechConverter = rotational_converter(K = back_emf_constant);
    friction                       = friction(brkwy_trq = breakaway_torque, Col_trq = coulomb_torque, ...
                                        visc_coef = viscous_coeff, brkwy_vel = breakaway_velocity);
    motorInertia                   = inertia(inertia = motor_inertia);
end

connections
    connect(p, rotorResistor.p);
    connect(rotorResistor.n, rotorInductor.p);
    connect(rotorInductor.n, rotationalElectroMechConverter.p);
    connect(rotationalElectroMechConverter.n, n);
    connect(rotationalElectroMechConverter.R, friction.R, motorInertia.I, R);
    connect(rotationalElectroMechConverter.C, friction.C, C);
end

end

Consider the three import statements at the beginning of the file. The first one:

import foundation.electrical.electrical;

is a qualified import of the Foundation electrical domain class. Therefore, in the nodes section, you
can define the p and n nodes simply as electrical.

The second statement:

import foundation.electrical.elements.*;

is an unqualified import, which imports all subpackages and classes under the
foundation.electrical.elements subpackage and therefore gives you direct access to all the
Foundation electrical components in the Elements sublibrary, such as inductor, resistor, and
rotational_converter.
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The third statement:

import foundation.mechanical.rotational.*;

is an unqualified import, which imports all subpackages and classes under the
foundation.mechanical.rotational subpackage and therefore gives you direct access to the
Foundation mechanical rotational domain definition (rotational) and components (such as
friction and inertia).

The nodes block declares two electrical nodes, p and n, and two mechanical rotational nodes, R and
C.

The components block declares all the member (constituent) components, using the following
components from the Simscape Foundation library:

• Resistor
• Inductor
• Rotational Electromechanical Converter
• Rotational Friction
• Inertia

Because of the import statements at the top of the file, these classes already exist in the scope of the
file, and you do not have to specify their complete names starting from the top-level package
directory.

See Also

Related Examples
• “Composite Component — DC Motor” on page 2-97

More About
• “Importing Domain and Component Classes” on page 2-111
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Advanced Techniques

• “Mode Chart Modeling” on page 3-2
• “Switch with Hysteresis” on page 3-5
• “State Reset Modeling” on page 3-11
• “Enumerations” on page 3-14
• “Declaration Functions” on page 3-21
• “Simscape Functions” on page 3-24
• “Component Arrays” on page 3-28
• “Segmented Pipeline Using Component Array” on page 3-31
• “Case Study — Battery Pack with Fault Using Arrays” on page 3-33
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Mode Chart Modeling
In this section...
“About Mode Charts” on page 3-2
“Mode Chart Syntax” on page 3-2
“Mode Chart Example” on page 3-3

About Mode Charts
Mode charts provide an intuitive way to model components characterized by a discrete set of distinct
operating modes. A car clutch is a good example of such a component. It has several operating
modes, with each mode being defined by a different set of equations. It also has a transition logic,
with a set of predicate conditions defining when the clutch transitions from one mode to another. It is
possible to model this component using primitive constructs, such as event variables and edge
operators, but this way of modeling lacks readability. For more complex components, the file becomes
cumbersome and unwieldy. Every time you model a component with multiple operating modes and
transitions, this component is a good candidate for a mode chart implementation.

These constructs in Simscape language let you perform mode chart modeling:

• modecharts — A top-level section in a component file. It can contain one or more modechart
constructs.

• modechart — A named construct that contains a textual representation of the mode chart:
modes, transitions, and an optional initial mode specification.

• modes — A section in a mode chart that describes all the operating modes. It can contain one or
more mode constructs.

• mode — A named construct that corresponds to a distinct operating mode of the component,
defined by a set of equations.

• transitions — A section in a mode chart that describes transitions between the operating
modes, based on predicate conditions.

• initial — An optional section in a mode chart that specifies the initial operating mode, based on
a predicate condition. If the predicate is not true, or if the initial section is missing, then the
first mode listed in the modes section is active at the start of simulation.

• entry — An optional section inside a mode construct in a mode chart that lets you specify the
actions to be performed upon entering the mode.

Mode Chart Syntax
In its simplest form, the hierarchical structure of a modecharts section can look like this:

modecharts
   mc1 = modechart
      modes
         mode m1
            equations
               ...
            end
         end
         mode m2
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            equations
               ...
            end
         end
      end
      transitions
         m1->m2 : p1;
      end
      initial
         m2 : p2;
      end
   end
end

It contains one mode chart, mc1, with two modes, m1 and m2.

The system transitions from mode m1 to mode m2 when the predicate condition p1 is true.

If the predicate condition p2 is true, the simulation starts in mode m2, otherwise in mode m1.

In this example, the transitions section does not define a transition from mode m2 to mode m1.
Therefore, according to this mode chart, once the system reaches mode m2, it never goes back to
mode m1.

Mode Chart Example
Use this simple example to understand how the mode charts work. For a more detailed example, see
“Switch with Hysteresis” on page 3-5.

component ExampleChart

  inputs
     u1 = 0;
  end

  outputs
     y = 0;
  end

  parameters
     p = 1;
  end

  modecharts(ExternalAccess = observe)
     mc1 = modechart
        modes
           mode m1
              equations
                 y==1;
              end
           end
           mode m2
              equations
                 y==2;
              end
              end
           mode m3
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              equations
                 y==3;
              end
           end
        end
        transitions
           m1->m2 : u1<0;
           m2->m3 : u1>0;
        end
        initial
           m2 : p<0;
        end
     end
  end

end

The component implements a simple chart with three operating modes:

• In the first mode, the output signal equals 1.
• In the second mode, the output signal equals 2.
• In the third mode, the output signal equals 3.

The component transitions from the first to the second mode when the input signal is negative, and
from the second to the third mode when the input signal is positive.

The initial mode depends on the block parameter value: if parameter p is negative, simulation starts
with the block in the second mode, otherwise — in the first mode.

See Also
modecharts | modes | transitions | initial | entry

More About
• “Switch with Hysteresis” on page 3-5
• “State Reset Modeling” on page 3-11
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Switch with Hysteresis
The Switch block in the Simscape Foundation library implements a switch controlled by an external
physical signal. The block uses an if-else statement. If the external physical signal at the control
port is greater than the threshold, then the switch is closed, otherwise the switch is open.

This example implements a switch with hysteresis applied to the switching threshold level. The
hysteresis acts to prevent rapid spurious switching when the control signal is noisy.

The switch has two distinct operating modes, shown in the diagram. If the external physical signal at
the control port is greater than the upper threshold, then the switch is closed. If the signal is lower
than the lower threshold, the switch is open.

The following component implements the logic in the diagram by using a mode chart.
component delayed_switch
% Switch with Hysteresis

inputs
    u = { 0.0, '1' };
end

nodes
    p = foundation.electrical.electrical; % +
    n = foundation.electrical.electrical; % -:right
end

parameters
    R_closed = { 0.01, 'Ohm' };   % Closed resistance R_closed
    G_open   = { 1e-8, '1/Ohm' }; % Open conductance G_open
    T_closed = { 0.5, '1' };      % Upper threshold
    T_open   = { 0, '1' };        % Lower threshold
    InitMode = switching.open;    % Initial Mode
end

variables
    i = { 0, 'A' }; % Current
    v = { 0, 'V' }; % Voltage
end

branches
    i : p.i -> n.i;
end

% Validate parameter values
equations
            assert( T_closed >= T_open, 'Upper threshold must be higher than Lower threshold' );
end
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modecharts(ExternalAccess = observe)
    m1 = modechart
        modes
            mode CLOSED
                equations
                    v == p.v - n.v;
                    v == i*R_closed;
                end
            end
            mode OPEN
                equations
                    v == p.v - n.v;
                    v == i/G_open;
                end
            end
        end
        transitions
            CLOSED -> OPEN : u < T_open;
            OPEN -> CLOSED : u > T_closed;
        end
        initial
            OPEN : InitMode <= 0;
        end
    end

end

end

The mode chart m1 defines two modes, CLOSED and OPEN. Each mode has an equations section that
lists all the applicable equations. The transitions section defines the transitions between the
operating modes, based on predicate conditions:

• The switch transitions from CLOSED to OPEN when the control signal falls below the lower
threshold, T_open.

• The switch transitions from OPEN to CLOSED when the control signal rises above the upper
threshold, T_closed.

The initial section specifies the initial operating mode, based on a predicate condition:

• If the predicate is true (that is, the Initial Mode parameter value is less than or equal to 0), then
the OPEN mode is active at the start of simulation.

• If the predicate is not true, then the CLOSED mode (the first mode listed in the modes section) is
active at the start of simulation.

Note The Initial Mode parameter uses an enumeration:

classdef switching < int32
   enumeration
     open (0)
     closed (1)
   end
   methods(Static)
       function map = displayText()
         map = containers.Map;
         map('open') = 'Switch is open';
         map('closed') = 'Switch is closed';
       end
   end
 end

For the component to work as described, this enumeration needs to be in a separate switching.m
file. The file can be located either on the MATLAB path or in a package imported into the component.
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In general, enumerations are very useful in mode charts, because they let you specify a discrete set of
acceptable parameter values. For more information, see “Enumerations” on page 3-14.

To verify the correct component behavior, deploy it in a Simscape Component block. Create a simple
test model, as shown, with all the blocks using the default parameter values.
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Simulate the model with the default values.
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The Initial Mode parameter value is Switch is open. This enumerated value evaluates to 0, which
makes the predicate in the initial section true. Therefore, at the start of simulation the switch is
open and no current flows through the resistor R1. When the control signal value reaches 0.5 (the
Upper threshold parameter value), the switch closes and the current through the branch, based on
the other parameter values, is 1A. When the control signal falls below 0 (the Lower threshold
parameter value), the switch opens.

Now change the Initial Mode parameter value to Switch is closed and simulate the model. The
enumerated value evaluates to 1, the predicate condition in the initial section is no longer true,
and therefore the first mode listed in the modes section is active. At the start of simulation, the
switch is closed, and it stays closed until the control signal falls below 0.
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See Also
modecharts | modes | transitions | initial

More About
• “Mode Chart Modeling” on page 3-2
• “Enumerations” on page 3-14
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State Reset Modeling
In this section...
“About State Reset” on page 3-11
“State Reset Example” on page 3-11

About State Reset
Event-based methods of state reinitialization and impulse handling let you model physical phenomena
such as collisions and bouncing balls. Using these state reset methods provides a significant boost in
simulation speed for such models, compared to continuous simulation.

To implement a state reset, use instantaneous modes and compound transitions in a mode chart. An
instantaneous mode is a mode that is active only for one event iteration. You specify that a mode is
instantaneous by using a compound transition:

A -> B -> C : t

The middle mode, B, is instantaneous. When predicate t becomes true, the system transitions from
mode A to mode B, performs one event iteration, and then immediately transitions to mode C.

You declare instantaneous modes the same way as regular modes, by using the mode section of a
mode chart. To specify that a mode is instantaneous, list it as the middle mode in a compound
transition. Only one instantaneous mode is allowed per transition, therefore, a compound transition
cannot contain more than three modes.

In the majority of state reset use cases, the reset value is a function of the previous value of the
variable. For example, when modeling a bouncing ball, the new velocity depends on the velocity
before impact. The entry section, which you declare within a mode section in a mode chart, lets you
specify the actions to be performed upon entering the mode. These actions are event variable updates
based on the value of a continuous expression immediately before entering the mode. When modeling
a state reset, you can use entry actions to update the value of an event variable based on the value of
the respective continuous variable immediately before entering the mode.

When you connect multiple ideal components that use state resets, the solver automatically detects
and propagates impulses in continuous states during variable reinitialization. Impulse propagation
can only trigger events whose predicates are linear expressions of continuous states. Also, impulse
detection can add computational cost during transient initialization. Two options in the Solver
Configuration block, Compute impulses and Impulse iterations, let you control the computational
cost of impulse detection during transient initialization. If you use fixed-cost simulation for a model
that contains components with state resets, select the Compute impulses check box to get the
correct impulse propagation results.

State Reset Example
Use this simple example to understand how to model state resets.

The Translational Hard Stop block in the Simscape Foundation library models a hard stop as a spring
and damper that come into contact with the slider at the bounds. In contrast, this example
implements an ideal translational hard stop, where the slider velocity resets instantaneously upon
hitting the upper or lower bound.
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component ideal_hard_stop

nodes
    R = foundation.mechanical.translational.translational % R:left
    C = foundation.mechanical.translational.translational % C:right
end

parameters
    upper_bnd = { 0.1, 'm'} % Upper bound
    lower_bnd = {-0.1, 'm'} % Lower bound
    e = 0.8                 % Coefficient of restitution
end

variables
    v = {0, 'm/s'}   % Velocity
    f = {0, 'N'}     % Force
    x = {value = {0, 'm'}, priority = priority.high} % Position
end

variables(Event = true, Access = private, ExternalAccess = none)
    v_old = {0, 'm/s'}
end

branches
    f : R.f -> C.f
end

equations
    v == R.v - C.v
    x.der == v

    assert(e > 0);
    assert(e <= 1);
    assert(upper_bnd > 0);
    assert(lower_bnd < 0);
end

modecharts(ExternalAccess = observe)
  m = modechart
    modes
      mode FREE
        equations
          f == 0
        end
      end
      mode IMPACT
        entry
          v_old = v
        end
        equations
          v == -e*v_old
        end
      end
    end
    transitions
      FREE -> IMPACT -> FREE : x <= lower_bnd && v < 0
      FREE -> IMPACT -> FREE : x >= upper_bnd && v > 0
    end
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  end
end

end

The mode chart m defines two modes:

• FREE, when the slider travels freely between the bounds.
• IMPACT, when the slider hits one of the bounds.

Each mode has an equations section that lists the equations applicable to that mode. The
equations section outside the mode chart lists the asserts and equations that apply to both modes.

The transitions section defines two compound transitions, one for the slider hitting the lower
bound and one for the upper bound. In each transition, when the predicate becomes true, the
component switches from the FREE mode to IMPACT, and then back to FREE. IMPACT is an
instantaneous mode.

When the component enters the IMPACT mode, the event variable v_old gets updated with the value
of velocity before impact. This update action is defined in the entry section for that mode. Then, in
the equations section for this mode, the velocity, v, is reset to a value that is a function of this
previous velocity value and the coefficient of restitution, e.

The component implements separate transitions for the upper and lower bounds to improve code
readability. The predicate for each of these compound transitions includes both the slider position and
the velocity sign, to avoid entering a self-loop. Compound transitions follow the same rules as regular
transitions. If a predicate is true, the system immediately enters the transition. Therefore, if you
defined a compound transition based only on the slider position:

transitions
    FREE -> IMPACT -> FREE : x <= lower_bnd || x >= upper_bnd
end

the predicate could still be true after completing the transition, the system would enter an infinite
loop and eventually generate an error. To avoid this situation, it is a good practice to try to model
compound transitions in such a way that the instantaneous mode invalidates the predicate:

transitions
    FREE -> IMPACT -> FREE : x <= lower_bnd && v < 0
    FREE -> IMPACT -> FREE : x >= upper_bnd && v > 0
end

In this case, while in instantaneous mode, the velocity flips sign and the predicate is no longer valid.

For a more detailed example, see “Mass on Cart using an Ideal Hard Stop”, which uses a custom
Ideal Hard Stop block with additional options that cover a wider variety of use cases. That block has a
more complex mode chart, but the modeling principles and the block behavior are similar.

See Also
modecharts | modes | transitions | initial | entry

More About
• “Mode Chart Modeling” on page 3-2
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Enumerations

In this section...
“Enumerations in Simscape Language” on page 3-14
“Specifying Display Strings for Enumeration Members” on page 3-15
“Evaluating Enumeration Members” on page 3-16
“Using Enumeration in Event Variables and when Clauses” on page 3-17
“Using Enumeration in Predicates” on page 3-17
“Using Enumeration in Function Arguments” on page 3-18
“Rules and Restrictions” on page 3-19

Enumerations in Simscape Language
Simscape language supports MATLAB enumerations in:

• Component parameters
• Event variables and when clauses
• Equation predicates
• Conditional declaration predicates
• Function arguments (such as an interpolation method in tablelookup)
• Mode charts

You define enumerations using a MATLAB enumeration class. For more information, see
“Enumerations”.

The enumeration class must derive from the int32 type, for example:

classdef offon < int32
   enumeration
     off (0)
     on (1)
   end
end

Save the enumeration class definition in a .m file with the same name as the class. For more
information, see “Rules and Restrictions” on page 3-19.

You can then use this enumeration in a component parameter:

parameters
   fl_c = offon.off; % Fluid compressibility
end

In the resulting block dialog, the Fluid compressibility parameter will have a drop-down list of
values, off and on, with off as the default.
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Specifying Display Strings for Enumeration Members
When using enumerations in component parameters, you can specify user-friendly strings to be
displayed in the block dialog, instead of member identifiers:

classdef damping < int32
   enumeration
     direct (0)
     derived (1)
   end
   methods(Static)
       function map = displayText()
         map = containers.Map;
         map('direct') = 'By damping value';
         map('derived') = 'By no-load current';
       end
   end
end

You can then use this enumeration in a component parameter, for example:

parameters
   r_damp = damping.direct; % Rotor damping parameterization
end

In the resulting block dialog, the Rotor damping parameterization parameter has a drop-down list
of values:

• By damping value
• By no-load current

By damping value is the default value.
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For a detailed example of using enumeration with display strings in a component parameter, see “Use
Advanced Techniques to Customize Block Display” on page 4-47.

Evaluating Enumeration Members
If an enumeration class derives from a built-in numeric class, the subclass inherits ordering and
arithmetic operations that you can apply to the enumerated names. Enumeration classes used in
Simscape language must derive from the int32 type. Therefore, when used in mathematical
expressions, enumeration members convert to integers according to the specified value. For example,
the “Switch with Hysteresis” on page 3-5 component uses this enumeration:

classdef switching < int32
   enumeration
     open (0)
     closed (1)
   end
   methods(Static)
       function map = displayText()
         map = containers.Map;
         map('open') = 'Switch is open';
         map('closed') = 'Switch is closed';
       end
   end
 end

The enumeration is used in the Initial Mode parameter declaration:
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parameters
    ...
    InitMode = switching.open;    % Initial Mode
end

Then, the initial section of the mode chart uses the Initial Mode parameter value in the predicate
expression:

initial
   OPEN : InitMode <= 0;
end

When the Initial Mode parameter value is Switch is open, the corresponding enumeration
member, open (0), evaluates to 0, and the predicate is true. Therefore, at the start of simulation the
switch is open.

Conversely, when the parameter value is Switch is closed, the corresponding enumeration
member, closed (1), evaluates to 1, and the predicate is false. For more information, see “Switch
with Hysteresis” on page 3-5.

Using Enumeration in Event Variables and when Clauses
The previous sections discussed using enumerations to declare component parameters with a
discrete set of acceptable values. However, you can also use enumerations to declare event variables,
because they also have a discrete set of values.

Event variables are piecewise constant, that is, they change values only at event instants (by using
the when clause), and keep their values constant between events.

For example:

variables (Event = true)
   x = myEnum.a;
end
events
   when edge(time > {1.0, 's'})
     x = myEnum.b;
   end
end

Using Enumeration in Predicates
The “Switch with Hysteresis” on page 3-5 component shows an example of using an enumerated
parameter in a mode chart predicate.

Another good practice is using enumerated parameters in conditional declaration predicates, to
define block variants. For example, you can have two variants of a pipe, one that accounts for
resistive properties only and the second that also models fluid compressibility:
component MyPipe
  parameters
     fl_c = offon.off; % Fluid compressibility
  end
  [...] % other parameters, variables, branches
  if fl_c == offon.off
    equations
       % first set of equations, resistive properties only 
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    end
  else
    variables
       % additional variable declarations, needed to account for fluid compressibility 
    end
    equations
       % second set of equations, including fluid compressibility 
    end
  end
end

In this example, the block parameter Fluid compressibility is using the offon enumeration:

classdef offon < int32
   enumeration
     off (0)
     on (1)
   end
end

In the resulting block dialog, the Fluid compressibility parameter has a drop-down list of values,
off and on, with off as the default. If the parameter is set to off, the first set of equations gets
activated and the block models only the resistive properties of the pipe. If the block user changes the
value of the parameter, then the else branch gets activated, and the compiled model includes the
additional variables and equations that account for fluid compressibility. For more information on
defining block variants, see “Defining Component Variants” on page 2-77.

Likewise, you can use enumerated parameters and event variables in equation predicates:

parameters
   p = myEnum.a;
end
variables
   x = 0;
   y = 0;
end
equations
   if p == myEnum.a 
     y == x * 100;
   elseif p == myEnum.b
     y == x * 0.01;
   else     % (p == myEnum.c)
     y == x;
   end
end

Using Enumeration in Function Arguments
Another way to use enumerations is in function arguments. For example, the tablelookup function
has two interpolation methods, linear and smooth, and three extrapolation methods, linear,
nearest, and error.

The Foundation library includes built-in enumerations, interpolation.m and extrapolation.m:

classdef interpolation < int32
   enumeration
       linear (1)
       smooth (2)
   end
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   methods(Static)
    function map = displayText()
      map = containers.Map;
      map('linear') = 'Linear';
      map('smooth') = 'Smooth';
    end
  end
end

classdef extrapolation < int32
   enumeration
       linear (1)
       nearest (2)
       error (3)
   end
   methods(Static)
    function map = displayText()
      map = containers.Map;
      map('linear') = 'Linear';
      map('nearest') = 'Nearest';
      map('error') = 'Error';
    end
  end
end

These enumerations are located in the directory matlabroot\toolbox\physmod\simscape
\library\m\+simscape\+enum.

You can use these enumerations to declare component parameters, and then use these parameters as
function arguments:
parameters
    interp = simscape.enum.interpolation.linear; % Interpolation method
    extrap = simscape.enum.extrapolation.linear; % Extrapolation method
end
equations
    o == tablelookup(xd, yd, x, interpolation = interp_method, extrapolation = extrap_method);
end

Instead of providing fully qualified names, you can use the import statement to reduce the amount of
typing:
import simscape.enum.*
...
parameters
    interp = interpolation.linear; % Interpolation method
    extrap = extrapolation.linear; % Extrapolation method
end
equations
    o == tablelookup(xd, yd, x, interpolation = interp, extrapolation = extrap);
end

Rules and Restrictions
Enumeration definitions are global. You define an enumeration once, in a separate file, and can then
use the same enumeration in multiple components.

The file containing the enumeration class definition must reside on the MATLAB path or in a package
directory. For more information about package directories, see “Organizing Your Simscape Files” on
page 4-25.

Parameters that have enumerated values are marked as Compile-time only in the block dialogs.
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Similar to MATLAB enumerations, you can define more than one identifier for the same integer value,
for example:

classdef myColor < int32
   enumeration
     red (0)
     blue (1)
     yellow (2)
     green (0)
   end
 end

The first identifier in the enumeration block with a given integer value is the actual identifier, and
subsequent identifiers are aliases.

Note Although multiple identifiers with the same integer value are allowed, it is recommended that
you use unique integer values within a Simscape language enumeration set, for better clarity.

See Also

Related Examples
• “Switch with Hysteresis” on page 3-5

3 Advanced Techniques

3-20



Declaration Functions
In this section...
“Multiple Return Values” on page 3-21
“Restriction on Values with Units” on page 3-22
“Run-Time Compatibility” on page 3-22

You can use declaration functions to compute derived parameter values or initialize variables, instead
of doing this inside the setup function.

Note Starting in R2019a, using setup is not recommended. Other constructs available in Simscape
language let you achieve the same results without compromising run-time capabilities. For more
information, see “setup is not recommended” on page 5-69.

Declaration function is a MATLAB function used inside a member declaration section in a Simscape
file. A declaration function can be any MATLAB function (even if it is not supported in the Simscape
language equations section), including user-defined functions on the MATLAB path. For example:
component A
  parameters
    p1 = 1;
    p2 = 0;
  end
  parameters(Access = private)
    pDerived = gamma(p1) + p2;
  end
  variables(Access = private)
    vDerived = {value = {my_fcn(p1,p2) + 1, 'm'}, priority = priority.high };
  end
  equations
    ...
  end
end

Use the Access=private attribute for member declaration unless all the arguments of the
declaration function are constants.

Exercise caution when using persistent variables inside a declaration function, because this may lead
to inconsistent results for multiple simulation runs.

Multiple Return Values
Declaration functions can return multiple values. They follow the general MATLAB function
conventions for multiple return values. For example, if my_fcn() is a declaration function that
returns three values:
[id1, ~, id3] = my_fcn();  % omit the second return value

[id1] = my_fcn();  % rules of single assignment apply, nonrequested return values ignored

The following restrictions apply:

• You can use multiple value assignments on the left-hand side only for parameters and variables
with the Access=private attribute.

• When omitting return values using the placeholder attribute (~), at least one value must be
assigned. Empty declarations produce an error in Simscape language.
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Restriction on Values with Units
Inputs and outputs of a declaration function must be unitless, that is, have a unit of '1'. Therefore,
you cannot directly pass parameter values, with units, as declaration function inputs.

For example, parameter p has the units of 'm'. To use it as an input for the myfcn function, use the
value function to get the unitless value of the parameter.

parameters
      p = {1,'m'}
end
parameters(Access = private)
      pd = my_fcn(value(p,'m'));   % extract unitless value from p
end

In the previous example, pd is a unitless parameter. To declare it as a value with unit, use the
{value,'unit'} syntax, for example:

      pd = {my_fcn(value(p,'m')),'m/s'};

For multiple input and return values with units, use this syntax:

      [y_value,z_value] = my_fcn(value(a,'V'),value(b,'V'));
      y = {y_value,'V'};
      z = {z_value,'V'};

For more information, see “Declaring a Member as a Value with Unit” on page 2-5.

Run-Time Compatibility
Member declarations for parameters and variables can include calls to MATLAB functions that
generate code.

By default, the declaration function will be evaluated at run time if a run-time parameter appears in
its input parameters. Otherwise, it will be evaluated at compile time.

In this example, my_fcn is a MATLAB function that supports code generation:

component A
  parameters
    p1 = 1;
    p2 = 0;
  end
  parameters(Access = private)
    pDerived = my_fcn(p1,p2);
  end
  equations
    ...
  end
end

If p1 or p2 is designated as Run-time in the block dialog, then my_fcn is evaluated at run time, and
you can tune these parameter values without regenerating code.

If my_fcn does not support code generation, you can set the member
attributeMATLABEvaluation=compiletime, to prevent the block user from accidentally
designating any of the function input parameters as Run-time in the block dialog:
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component A
  parameters
    p1 = 1;
    p2 = 0;
  end
  parameters(Access = private,MATLABEvaluation = compiletime)
    pDerived = my_fcn(p1,p2);
  end
  equations
    ...
  end
end

If you set this attribute, the declaration function will be evaluated only at compile time, and the block
parameters p1 and p2 will be marked as Compile-time only.

To work with run-time parameters:

• The declaration function must be in an unprotected MATLAB file
• All MATLAB code called must be MATLAB Coder™ compatible
• Subfunctions can be in protected MATLAB files, but to use them with run-time parameters:

• Use coder.allowpcode('plain')
• Turn on lint: %#codegen

For more information, see “Run-Time Parameters”.
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Simscape Functions
In this section...
“Main Simscape Functions” on page 3-24
“Using Main Simscape Functions” on page 3-25
“Recommended Ways of Code Reuse” on page 3-26
“Local Simscape Functions” on page 3-26

Simscape functions model a class of pure first-order mathematical functions with explicit input-output
relationship. These functions explicitly map the inputs of numerical values into outputs of numerical
values by using declarative expressions. When a component calls a Simscape function, numerical
input values are passed to the function, which then evaluates these declarative expressions to
compute the output values.

There are two types of Simscape functions:

• Main function — In general, the purpose of Simscape functions is to reuse expressions in
equations of multiple components, as well as in member declarations of domain or component
files. Each of these functions must be in a separate Simscape file, with the file name matching the
function name.

• Local function — In contrast, local Simscape functions reside inside a Simscape file that defines a
component, domain, or another function, and are accessible only by that component, domain, or
main function. For more information, see “Local Simscape Functions” on page 3-26.

Main Simscape Functions
Each main function must be in a separate Simscape file. The file name must match the function name.
For example, function foo must be in a file called foo.ssc.

The Simscape function file must start with the keyword function, followed by the function header,
which includes the function name, inputs, and outputs. For example:

function out = MyFunction(in1,in2)

If the function has multiple return values, the syntax is:

function [out1,out2] = MyFunction(in1,in2)

The body of the function must be enclosed inside the definitions section, for example:

function out = SumSquared(in1,in2)
   definitions
      out = in1^2 + 2*in1*in2 + in2^2;
   end
end

Syntax Rules

• One or more output parameters are allowed.
• If an output parameter is not used on the left-hand side of the definitions section, you get an

error.
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• Zero or more input parameters are allowed.
• When the function is called, the number of input arguments must match the number of input

parameters.
• Input parameters are positional. This means that the first input argument during the function call

is passed to the first input parameter, and so on. For example, if you write an equation:

o == SumSquared(5,2);

then in1 is 5 and in2 is 2.
• If the function has multiple return values, they are also positional. That is, the first output

parameter gets assigned to the first return value, and so on.
• If the function has multiple return values, the rules and restrictions are the same as for

declaration functions. For more information, see “Multiple Return Values” on page 3-21.
• The definitions section can contain intermediate terms and if-elseif-else statements. The

same syntax rules as in the declaration section of a let statement apply. For more information,
see “Using Intermediate Terms in Equations” on page 2-37.

• The definitions section cannot contain expressions with dynamic semantics, such as integ,
time, der, edge, initialevent, or delay.

Packaging Rules

• Simscape function files can reside directly on MATLAB path or in package directories. For more
information, see “Organizing Your Simscape Files” on page 4-25.

• You can use source protection, as described in “Using Source Protection for Simscape Files” on
page 4-26.

• Importing a package imports all the Simscape functions in this package. For more information, see
“Importing Domain and Component Classes” on page 2-111.

• If a MATLAB function and a Simscape function have the same name, the MATLAB function has
higher precedence.

Using Main Simscape Functions
The purpose of main Simscape functions is to reuse expressions in equations of multiple components,
as well as in member declarations of domain or component files.

For example, exponential diode equations often use an expression that is a modification of exp(i), to
provide protection for large magnitudes of i. For details, see Diode and NPN Bipolar Transistor block
reference pages. The “Simscape Functions” example shows how you can write a Simscape function to
reuse this expression, instead of repeating it in every block:

function out = userFunction(x,y,z)
definitions
    out = if x > y
        (x-z)*exp(y);
    elseif x < -z
        (x+y)*exp(-z);
    else
        exp(x)
    end
end
end
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Then, the Diode block can call this function with y and z values of 80 and 79, respectively:

equations
   o == SimscapeFunction.Use.Functions.userFunction(i,80,79);
end

and the NPN Bipolar Transistor block can call the same function with values of 40 and 39:

equations
   o == SimscapeFunction.Use.Functions.userFunction(i,40,39);
end

Recommended Ways of Code Reuse
Simscape language has a variety of tools that facilitate code reuse. Simscape functions and
declaration functions let you reuse expressions. Subclassing and composite components let you reuse
equations.

To reuse expressions across multiple components:

• Use main Simscape functions to reuse expressions in equations and member declarations.
• Use declaration functions in member declarations to reuse expressions that are out of Simscape

expression capability. For more information, see “Declaration Functions” on page 3-21.

Functionality Authoring Language File extension Usage Supports
Arguments with
Units

Simscape function Simscape .ssc or .sscp Member declaration and
equations

Yes

Declaration
function

MATLAB .m or .p Member declaration only No

To reuse equations across multiple components:

• Use subclassing to model the "is-a" relationship between the base component and the derived
component. The equations in the base component are reused in the derived component. For more
information, see “Subclassing and Inheritance” on page 2-108.

• Use composite components to model the "has-a" relationship between the container component
and the subcomponents. The equations in the member components are reused in the composite
component. For more information, see “About Composite Components” on page 2-60.

Local Simscape Functions
Local Simscape functions reside inside a Simscape file that defines a component, domain, or another
function, and are accessible only by that component, domain, or main function. For example, when
you need to use a function in a single component only, defining it as a local function:

• Reduces the overhead of creating and packaging separate files.
• Restricts access, to ensure that only that specific component can use this function.
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Include the local Simscape function in a component, domain, or function file, after the final end
keyword that concludes the description of the component, domain, or main function. For example,
this rotational spring component uses a local function to modify its torque equation:

component spring_with_local_function
  nodes
    r = foundation.mechanical.rotational.rotational;
    c = foundation.mechanical.rotational.rotational;
  end
  parameters
    k = { 10, 'N*m/rad' };
  end
  variables
    theta = { 0, 'rad' };
    t = { 0, 'N*m' };        % torque through
    w = { 0, 'rad/s' };      % velocity across
  end
  branches
    t : r.t -> c.t; % torque through from node r to node c
  end
  equations
    assert(k>0)     % spring rate must be greater than zero
    w == r.w - c.w; % velocity across between node r and node c
    t == localTorque(k,theta);
    w == theta.der;
  end
end

function out = localTorque(in1,in2)
   definitions
      out = (in1*in2)*9.76; % Modification made to torque relationship
   end
end

The syntax rules for local functions are the same as for main functions. See “Syntax Rules” on page 3-
24.

You can have multiple local functions declared in the same component, domain, or function file.

Local functions can contain calls to other local functions, in the same file, or to main functions in
other files. In case of a name conflict, local functions have higher call precedence than main
functions.

See Also
function

Related Examples
• “Simscape Functions”

More About
• “Declaration Functions” on page 3-21
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Component Arrays
In this section...
“About Component Arrays” on page 3-28
“Syntax Rules and Restrictions” on page 3-29

About Component Arrays
Component arrays provide an intuitive way to model composite components with an arbitrary number
of homogeneous members, such as segmented pipelines, battery packs, or transmission lines.

Use a for loop to declare an array of member components:
  for i=1:array_size
     components (ExternalAccess=none)
    member_comp(i) = compX;
     end
  end

The array size can be declared as an adjustable parameter of the composite component, so that the
block users can modify this value.
  parameters
     array_size = 10;               % Number of member components
  end

Declare the parameter specifying the array size as a unitless integer because a for loop iterator
must be a unitless integer.

Similar to regular composite components, if you want certain parameters of the underlying member
component to be adjustable through the composite component interface, include them in the member
declaration. This example establishes the relationship between parameter parX of the member
component compX and the top-level parameter top_level_parX of the composite component:
  parameters
     array_size = 10;              % Number of member components
     top_level_parX = { 1, 'm' };  % Modifiable parameter of the member components
  end
  for i=1:array_size
     components (ExternalAccess=none)
    member_comp(i) = compX(parX = top_level_parX);
     end
  end

Use for loops to specify connections between the member components. The iterator range for these
for loops depends on the array size and the type of connection. For example, when you connect N
members in parallel, the iterator range is equal to the array size:
  for i=1:N
     connections
    connect(compX(i).A, A);
    connect(compX(i).B, B);
     end
  end

However, if you connect N members in series, the iterator range is from 1 to (N-1), because you are
connecting port B of each member except the last one to port A of the next member:
  for i=1:(N-1)
     connections

3 Advanced Techniques

3-28



    connect(compX(i).B, compX(i+1).A);
     end
  end

In this case, do not forget to connect the ends of the chain to the external ports of the composite
component:
  connections
     connect(compX(1).A, A);
     connect(compX(N).B, B);
  end

You can also use compX(end) to indicate the last member of a component array. For example, this
syntax is equivalent to the previous one, for connecting the ends of the chain to the external ports of
the composite component:
  connections
     connect(compX(1).A, A);
     connect(compX(end).B, B);
  end

You can use nested for loops to create multidimensional arrays of components.

Syntax Rules and Restrictions
The following rules and restrictions apply to arrays in Simscape language:

• Arrays apply only to the component member class.
• Component arrays must be homogeneous, that is, their members must all belong to the same

class. However, members can have different parameter values.

• For an example of a component array with identical members, see “Segmented Pipeline Using
Component Array” on page 3-31.

• For an example of how you can specify different parameter values for certain members of a
component array, see “Case Study — Battery Pack with Fault Using Arrays” on page 3-33.

• The array size can be a parameter, or a parametric expression. Parameters that control the array
size can have their ExternalAccess attribute set to modify, which enables the block users to
change the size of the array.

• Array members must have the ExternalAccess attribute set to none or observe.
• Empty arrays are not supported.

You can use for loops to declare component arrays and to connect members of the array to each
other. for loops have the same syntax as for in MATLAB. The following rules and restrictions apply
to for loops in Simscape language:

• for loops can contain only components or connections.
• The for loop iterator must be a unitless integer.
• for loops can be nested. Use nested for loops to create multidimensional arrays of components.
• In nested for loops, the iterator in a nested loop cannot refer to an iterator in a loop above it. For

example, this syntax is invalid:

for i=1:N
   for j=1:i
     ...
   end
end
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• Component declaration using a for loop must contain the for loop iterator on the left side as a
bare identifier, for example, pipe(i). You cannot use expressions or numbers in place of an
iterator. Components declared inside a nested for loop must list all the iterators, for example:

for i=1:N
   for j=1:M
     components (ExternalAccess=none)
    resistor(i,j) = foundation.electrical.elements.resistor(R = R);
     end
   end
end

• You cannot include conditional sections (that you use to define component variants) inside for
loops. However, you can include for loops inside the conditional sections.

See Also

More About
• “Segmented Pipeline Using Component Array” on page 3-31
• “Case Study — Battery Pack with Fault Using Arrays” on page 3-33
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Segmented Pipeline Using Component Array
This example shows how you can model a segmented pipeline using a component array. This
segmented pipeline model is a composite component that consists of N identical segments connected
in series. Individual pipe segments are represented by the Pipe (IL) blocks from the Foundation
library. N is a parameter that the block user can modify.

component SegmentedPipeline
  parameters
     N = 10;             % Number of segments
     segm_length = { 5, 'm' };     % Length of each segment
  end

  % Ports at the two ends of the pipeline
  nodes
     A = foundation.isothermal_liquid.isothermal_liquid; % A:left
     B = foundation.isothermal_liquid.isothermal_liquid; % B:right
  end

  % Declare array of N components
  for i=1:N
     components (ExternalAccess=none)
    pipe(i) = foundation.isothermal_liquid.elements.pipe(length = segm_length);
     end
  end

  % Connect all segments in series
  for i=1:(N-1)
     connections
    connect(pipe(i).B, pipe(i+1).A);
     end
  end

  % Connect two ends of pipeline to first and last segment, respectively
  connections
     connect(A, pipe(1).A);
     connect(B, pipe(N).B);
  end
end

In this example, for the sake of simplicity, the SegmentedPipeline component has only two
modifiable parameters: N (Number of segments) and segm_length (Length of each segment).
However, you can make other parameters of the underlying Pipe (IL) block accessible from the top-
level composite component block dialog, as described in “Parameterizing Composite Components” on
page 2-62. Parameter N, which defines the array size and is going to be used as the upper limit for the
for loop iterator, is declared as a unitless integer.

Use a for loop to declare an array of N member components:
  for i=1:N
     components (ExternalAccess=none)
    pipe(i) = foundation.isothermal_liquid.elements.pipe(length = segm_length);
     end
  end

In this example, all the pipe segments have the same length. For an example of array component
members having different parameter values, see “Case Study — Battery Pack with Fault Using
Arrays” on page 3-33.
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Use another for loop to connect all segments in series, by connecting node B of each pipe segment
(except the last one) to node A of the next segment:
  for i=1:(N-1)
     connections
    connect(pipe(i).B, pipe(i+1).A);
     end
  end

Finally, connect the internal chain of segments to the two ends of pipeline, by connecting node A of
the composite component to node A of the first segment and connecting node B of the composite
component to node B of the last segment:
  connections
     connect(A, pipe(1).A);
     connect(B, pipe(N).B);
  end
end

The resulting block has two isothermal liquid ports, A and B, and two modifiable parameters:
Number of segments and Length of each segment.

See Also

More About
• “Component Arrays” on page 3-28
• “Case Study — Battery Pack with Fault Using Arrays” on page 3-33
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Case Study — Battery Pack with Fault Using Arrays
In this section...
“Overview of the Model” on page 3-33
“Introducing the Fault” on page 3-35
“Declaring Arrays of Member Components” on page 3-36
“Connecting the Components” on page 3-37
“Outputting Data as a Numeric Array” on page 3-41
“Battery Pack Block” on page 3-42

Overview of the Model
This case study explains how you can use component arrays to model a battery pack consisting of
multiple series-connected cells. It also shows how you can introduce a fault into one of the cells to see
the impact on battery performance and cell temperatures. Both the number of cells and the position
of the faulted cell are the top-level component parameters modifiable by the block user.

The case study is based on the “Lithium-Ion Battery Pack With Fault Using Arrays” example. To open
the example model, type ssc_lithium_battery_arrays in the MATLAB Command Window.

The Battery Pack block is a composite component modeling an array of battery cells. The source files
for this example are in the following package folder:
matlabroot/toolbox/physmod/simscape/simscapedemos/+BatteryPack

where matlabroot is the MATLAB root directory on your machine, as returned by entering

matlabroot

in the MATLAB Command Window.

The +BatteryPack package contains the following files:

• battery_cell.ssc — Component file representing the individual battery cell. The source for
this component is generated using subsystem2ssc from the Lithium Cell 1RC subsystem in the
“Lithium Battery Cell - One RC-Branch Equivalent Circuit” example.

• battery_pack.ssc — Composite component that models the battery pack as an array of
battery_cell components.

component battery_pack
% Battery Pack
% This block models a scalable battery pack with faults using arrays.

% Copyright 2019 The MathWorks, Inc.

parameters
    Ncells = 20; % Number of series-connected cells
    cell_mass = {1, 'kg'}; % Cell mass
    cell_area = {0.1019, 'm^2'}; % Cell area
    h_conv    = {5, 'W/(m^2 * K)'}; % Heat transfer coefficient
    cell_Cp_heat = {810.5328, 'J/(kg*K)'}; %Cell specific heat
    Qe_init = {15.6845, 'hr*A'}; %Initial cell charge deficit
    T_init = {293.15, 'K'}; % Initial cell temperature
    SOC_LUT = [0; .1; .25; .5; .75; .9; 1]; %SOC table breakpoints (Mx1 array)
    Temperature_LUT = {[278.15, 293.15, 313.15], 'K'}; %Temperature table breakpoints (1xN array)
    Capacity_LUT = {[28.0081, 27.625, 27.6392], 'hr*A'}; %Capacity (1xN table)
    Em_LUT = {[3.4966, 3.5057, 3.5148; 3.5519, 3.566, 3.5653; 3.6183, 3.6337, 3.6402; 3.7066, 3.7127, 3.7213; 3.9131, 3.9259, 3.9376; 4.0748, 4.0777, 4.0821; 4.1923, 4.1928, 4.193], 'V'}; %Em open-circuit voltage, Em (MxN table)
    R0_LUT = {[.0117, .0085, .009; .011, .0085, .009; .0114, .0087, .0092; .0107, .0082, .0088; .0107, .0083, .0091; .0113, .0085, .0089; .0116, .0085, .0089], 'Ohm'}; %R0 terminal resistance (MxN table)
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    R1_LUT = {[.0109, .0029, .0013; .0069, .0024, .0012; .0047, .0026, .0013; .0034, .0016, .001; .0033, .0023, .0014; .0033, .0018, .0011; .0028, .0017, .0011], 'Ohm'}; %R1 cell resistance (MxN table)
    C1_LUT = {[1913.6, 12447, 30609; 4625.7, 18872, 32995; 23306, 40764, 47535; 10736, 18721, 26325; 18036, 33630, 48274; 12251, 18360, 26839; 9022.9, 23394, 30606], 'F'}; %C1 capacitance (MxN table)
    % Fault cell
    fault_cell_position = 10; %Fault cell position
    fault_cell_Capacity_LUT = {[28.0081, 27.625, 27.6392]*0.95, 'hr*A'}; %Fault cell capacity (1xN table)
    fault_cell_Em_LUT = {[3.4966, 3.5057, 3.5148; 3.5519, 3.566, 3.5653; 3.6183, 3.6337, 3.6402; 3.7066, 3.7127, 3.7213; 3.9131, 3.9259, 3.9376; 4.0748, 4.0777, 4.0821; 4.1923, 4.1928, 4.193]*0.90, 'V'}; %Fault cell Em open-circuit voltage, Em (MxN table)
    fault_cell_R0_LUT = {[.0117, .0085, .009; .011, .0085, .009; .0114, .0087, .0092; .0107, .0082, .0088; .0107, .0083, .0091; .0113, .0085, .0089; .0116, .0085, .0089]*5, 'Ohm'}; % Fault cell R0 terminal resistance (MxN table)
    fault_cell_R1_LUT = {[.0109, .0029, .0013; .0069, .0024, .0012; .0047, .0026, .0013; .0034, .0016, .001; .0033, .0023, .0014; .0033, .0018, .0011; .0028, .0017, .0011]*5, 'Ohm'}; % fault cell R1 cell resistance (MxN table)
    fault_cell_C1_LUT = {[1913.6, 12447, 30609; 4625.7, 18872, 32995; 23306, 40764, 47535; 10736, 18721, 26325; 18036, 33630, 48274; 12251, 18360, 26839; 9022.9, 23394, 30606]*0.95, 'F'}; % Fault cell C1 capacitance (MxN table)
end

nodes
    p = foundation.electrical.electrical; % +:top
    n = foundation.electrical.electrical; % -:bottom
    H = foundation.thermal.thermal; % H:bottom
end

variables(Access=protected)
    T = {ones(1,Ncells),'K'};
    SOC = ones(1,Ncells);
end

outputs
    m = {ones(1,Ncells),'K'}; % m:top
end

for i =1:Ncells
    components(ExternalAccess=none)
        battery_cell(i) = BatteryPack.battery_cell(cell_mass=cell_mass,cell_Cp_heat=cell_Cp_heat,...
            C1_LUT=(if i==fault_cell_position,fault_cell_C1_LUT;else C1_LUT; end),...
            SOC_LUT=SOC_LUT,Temperature_LUT=Temperature_LUT,...
            Capacity_LUT=(if i==fault_cell_position,fault_cell_Capacity_LUT;else Capacity_LUT; end),...
            Em_LUT=(if i==fault_cell_position,fault_cell_Em_LUT;else Em_LUT; end),Qe_init=Qe_init,...
            R0_LUT=(if i==fault_cell_position,fault_cell_R0_LUT;else R0_LUT; end),...
            R1_LUT=(if i==fault_cell_position,fault_cell_R1_LUT;else R1_LUT; end),T_init.value=T_init);
        convection(i) = foundation.thermal.elements.convection(area=cell_area,heat_tr_coeff=h_conv);
    end

    connections
        connect(battery_cell(i).H,convection(i).B);
        connect(H,convection(i).A);
    end
end

connections
    connect(battery_cell(1).p,p);
    connect(battery_cell(Ncells).n,n);
end

equations
    assert(mod(Ncells, 1) == 0 && Ncells > 0, 'Number of series-connected cells must be a positive integer');
    assert(mod(fault_cell_position, 1) == 0 && fault_cell_position > 0 && fault_cell_position <= Ncells , 'Fault cell position must be a positive integer less than or equal to Number of series-connected cells');
    T == [battery_cell.T_init];
    SOC == [battery_cell.SOC];
    m == T;
end

for i=1:Ncells-1
    components(ExternalAccess=none)
        conduction(i) = foundation.thermal.elements.conduction(area={1e-3,'m^2'},...
            th_cond={200,'W/(m*K)'});
    end
    connections
        connect(battery_cell(i+1).p,battery_cell(i).n);
        connect(battery_cell(i).H,conduction(i).A);
        connect(battery_cell(i+1).H,conduction(i).B);
    end
end

end

This schematic represents the equivalent circuit for the composite component.
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The composite component has two electrical nodes, p and n, and one thermal node, H:

nodes
    p = foundation.electrical.electrical; % +:top
    n = foundation.electrical.electrical; % -:bottom
    H = foundation.thermal.thermal; % H:bottom
end

The component also has an output, m, to output the temperature data:

outputs
    m = {ones(1,Ncells),'K'}; % m:top 
end

Introducing the Fault
The fault is represented by changing the parameters for one of the battery cells, reducing both
capacity and open-circuit voltage, and increasing the resistance values.

To account for the fault, top-level composite component parameters are divided in two groups:
generic parameters and those specific to the faulted cell. For example, cell mass is the same for all
cells. However, the capacitance of the faulted cell is different from all the other cells, therefore it
needs a separate fault_cell_Capacity_LUT parameter, instead of the generic Capacity_LUT.
parameters
    Ncells = 20; % Number of series-connected cells
    cell_mass = {1, 'kg'}; % Cell mass
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    cell_area = {0.1019, 'm^2'}; % Cell area
    h_conv    = {5, 'W/(m^2 * K)'}; % Heat transfer coefficient
    cell_Cp_heat = {810.5328, 'J/(kg*K)'}; %Cell specific heat
    Qe_init = {15.6845, 'hr*A'}; %Initial cell charge deficit
    T_init = {293.15, 'K'}; % Initial cell temperature
    SOC_LUT = [0; .1; .25; .5; .75; .9; 1]; %SOC table breakpoints (Mx1 array)
    Temperature_LUT = {[278.15, 293.15, 313.15], 'K'}; %Temperature table breakpoints (1xN array)
    Capacity_LUT = {[28.0081, 27.625, 27.6392], 'hr*A'}; %Capacity (1xN table)
    Em_LUT = {[3.4966, ... 4.1928, 4.193], 'V'}; %Em open-circuit voltage, Em (MxN table)
    R0_LUT = {[.0117, ... .0085, .0089], 'Ohm'}; %R0 terminal resistance (MxN table)
    R1_LUT = {[.0109, ... .0017, .0011], 'Ohm'}; %R1 cell resistance (MxN table)
    C1_LUT = {[1913.6, ... 23394, 30606], 'F'}; %C1 capacitance (MxN table)
    % Fault cell
    fault_cell_position = 10; %Fault cell position
    fault_cell_Capacity_LUT = {[28.0081, 27.625, 27.6392]*0.95, 'hr*A'}; %Fault cell capacity (1xN table)
    fault_cell_Em_LUT = {[3.4966, ... 4.1928, 4.193]*0.90, 'V'}; %Fault cell Em open-circuit voltage, Em (MxN table)
    fault_cell_R0_LUT = {[.0117, ... .0085, .0089]*5, 'Ohm'}; % Fault cell R0 terminal resistance (MxN table)
    fault_cell_R1_LUT = {[.0109, ... .0017, .0011]*5, 'Ohm'}; % fault cell R1 cell resistance (MxN table)
    fault_cell_C1_LUT = {[1913.6, ... 23394, 30606]*0.95, 'F'}; % Fault cell C1 capacitance (MxN table)
end

Both the number of cells, Ncells, and the position of the faulted cell, fault_cell_position, are
top-level parameters of the composite component, which means that they will be modifiable by the
block user.

Declaring Arrays of Member Components
Declare an array of cells, with the number of elements defined by the Ncells parameter.
for i =1:Ncells
    components(ExternalAccess=none)
        battery_cell(i) = BatteryPack.battery_cell(cell_mass=cell_mass,cell_Cp_heat=cell_Cp_heat,...
            C1_LUT=(if i==fault_cell_position,fault_cell_C1_LUT;else C1_LUT; end),...
            SOC_LUT=SOC_LUT,Temperature_LUT=Temperature_LUT,...
            Capacity_LUT=(if i==fault_cell_position,fault_cell_Capacity_LUT;else Capacity_LUT; end),...
            Em_LUT=(if i==fault_cell_position,fault_cell_Em_LUT;else Em_LUT; end),Qe_init=Qe_init,...
            R0_LUT=(if i==fault_cell_position,fault_cell_R0_LUT;else R0_LUT; end),...
            R1_LUT=(if i==fault_cell_position,fault_cell_R1_LUT;else R1_LUT; end),T_init.value=T_init);
    end
end

For each member, associate its parameters with the top-level parameters of the composite
component. For the iterator value that corresponds to the faulted cell position, specify the faulted cell
parameters instead of the respective generic ones, as needed. For example, all cells have the same
cell mass:
cell_mass=cell_mass

However, the capacitance of the faulted cell is different from all the other cells, therefore, for the
iterator value that corresponds to the faulted cell position, assign the Capacity_LUT parameter of
the cell to the fault_cell_Capacity_LUT parameter of the composite component, and for all other
cells assign it to Capacity_LUT:
Capacity_LUT=(if i==fault_cell_position,fault_cell_Capacity_LUT;else Capacity_LUT; end)

An array of N cells requires N identical convections and N-1 identical conductions. These are thermal
components from the Foundation library.
for i =1:Ncells
    components(ExternalAccess=none)
        convection(i) = foundation.thermal.elements.convection(area=cell_area,heat_tr_coeff=h_conv);
    end
end

for i=1:Ncells-1
    components(ExternalAccess=none)
        conduction(i) = foundation.thermal.elements.conduction(area={1e-3,'m^2'},...
            th_cond={200,'W/(m*K)'});
    end
end
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Connecting the Components
Use a for loop to connect all the electrical nodes of the cells in series, by connecting the negative
port of each cell (except the last one) to the positive port of the next cell:
  for i=1:Ncells-1
     connections
    connect(battery_cell(i+1).p,battery_cell(i).n);
     end
  end
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Then connect this internal chain to the two electrical nodes of the composite component:
  connections
     connect(battery_cell(1).p,p);
     connect(battery_cell(Ncells).n,n);
  end
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Use another for loop to connect thermal node H of each of the cells to node B of its respective
convection component, and also to connect nodes A of all the convection components to thermal node
H of the composite component:
  for i=1:Ncells
     connections
       connect(battery_cell(i).H,convection(i).B);
       connect(H,convection(i).A);
     end
  end
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Finally, incorporate the thermal conduction elements by connecting node A to node H of the previous
cell and node B to node H of the next cell:
  for i=1:Ncells-1
     connections
        connect(battery_cell(i).H,conduction(i).A);
        connect(battery_cell(i+1).H,conduction(i).B);
     end
  end
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Outputting Data as a Numeric Array
The physical signal output port, m, outputs the temperature data for the battery pack as a
multidimensional physical signal, composed of the temperature data for each cell. The vector size is
determined by the Ncells parameter value.

outputs
    m = {ones(1,Ncells),'K'}; % m:top 
end

To get the temperature data from the array of components, use the equations section. Declare the
variable T as protected, because public variables cannot reference parameters, and then use this
variable to extract the temperature values from the member cells.
variables(Access=protected)
    T = {ones(1,Ncells),'K'};
end
equations
    T == [battery_cell.T_init];
    m == T;
end

Indexing into member component variables, battery_cell.T_init, returns a comma-separated
list. You can then concatenate the comma-separated list into a numeric array,
[battery_cell.T_init], and use it in the component equations. For more information, see “How
to Use the Comma-Separated Lists”.
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Battery Pack Block
The Battery Pack block generated from this composite component has two electrical ports, + and -, a
thermal port, H, and a physical signal output port, m. The parameters modifiable through the block
interface include the number of cells in the battery pack and the position of the faulted cell. The block
user can modify the parameters of the faulted cell to see the impact of the fault on battery
performance and cell temperatures.

See Also

More About
• “Component Arrays” on page 3-28
• “Segmented Pipeline Using Component Array” on page 3-31
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Simscape File Deployment

• “Generating Custom Blocks from Simscape Component Files” on page 4-2
• “Selecting Component File Directly from Block” on page 4-3
• “Deploy a Component File in Block Diagram” on page 4-5
• “Switch Between Different Source Components” on page 4-9
• “Prototype a Component and Get Instant Feedback” on page 4-18
• “Building Custom Block Libraries” on page 4-25
• “When to Rebuild a Custom Library” on page 4-28
• “Customizing the Library Name and Appearance” on page 4-29
• “Create a Custom Block Library” on page 4-31
• “Customizing the Block Name and Appearance” on page 4-33
• “Customize Block Display” on page 4-45
• “Use Advanced Techniques to Customize Block Display” on page 4-47
• “Checking File and Model Dependencies” on page 4-52
• “Case Study — Basic Custom Block Library” on page 4-55
• “Case Study — Electrochemical Library” on page 4-60
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Generating Custom Blocks from Simscape Component Files
After you have created the textual component files, you need to convert them into Simscape blocks to
be able to use them in block diagrams. There are two mechanisms that let you do this:

• “Selecting Component File Directly from Block” on page 4-3 — Use the Simscape Component
block, which you can find in the Utilities library, and point it to a Simscape component file. The
block instantly acquires the properties based on the source component file: name, description,
parameters, variables, appropriate ports and the custom icon image (if available). If you modify
the underlying source file, the block reflects these changes. If you point the block to a different
component file, the block properties change accordingly, to reflect the new source.

Use this method to quickly deploy a single component file, to try out different variants of a
component in your model, or to iterate on a component definition and get instant feedback.

• “Building Custom Block Libraries” on page 4-25 — Generate a custom block library from a
package of Simscape component files. The package hierarchy determines the resulting library
structure. You can customize the library name and appearance and provide annotation.

Use this method to generate reusable custom block libraries.

See Also

Related Examples
• “Deploy a Component File in Block Diagram” on page 4-5
• “Switch Between Different Source Components” on page 4-9
• “Prototype a Component and Get Instant Feedback” on page 4-18
• “Create a Custom Block Library” on page 4-31
• “Customize Block Display” on page 4-45

More About
• “Customizing the Block Name and Appearance” on page 4-33
• “Customizing the Library Name and Appearance” on page 4-29
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Selecting Component File Directly from Block
In this section...
“Suggested Workflows” on page 4-3
“Component File Locations” on page 4-3

Suggested Workflows
The Simscape Component block lets you select a Simscape component file, and then instantly
acquires the properties based on that source component file: name, description, parameters,
variables, the block icon and appropriate ports. For more information on how the component file
elements translate into the properties of the block, see “Customizing the Block Name and
Appearance” on page 4-33.

Use the Simscape Component block to:

• Quickly deploy a single Simscape component file as a block in your model, without the extra steps
of packaging the file and building a custom library. For example, you wrote a component prototype
yourself, got it from a colleague, or found it on MATLAB Central. Save the file in your current
working directory, or anywhere on the MATLAB path, and use it as a source file for a Simscape
Component block in your model. For more information on valid locations of a source component
file, see “Component File Locations” on page 4-3. For an example of this workflow, see “Deploy
a Component File in Block Diagram” on page 4-5.

• Try out different component implementations, to decide which implementation is most appropriate
for your model. You can also use this workflow to test the differences between the old and new
implementations of the same component. Instead of adding, deleting, and reconnecting different
blocks in your model, you can use a single Simscape Component block and switch between the
source component files. When you point a Simscape Component block to a different component
file, the block properties change accordingly, to reflect the new source. For an example of this
workflow, see “Switch Between Different Source Components” on page 4-9.

• Quickly try out different ideas for a physical component and get instant feedback on the resulting
block implementation. This workflow lets you interactively modify the component source and
immediately see the changes by refreshing the resulting block. For an example of this workflow,
see “Prototype a Component and Get Instant Feedback” on page 4-18.

Component File Locations
When you deploy a component file by using the Simscape Component block, the component file does
not have to be in a package. However, the directory where the file resides has to be on the MATLAB
path. If the file resides in a package, then the package parent directory must be on the MATLAB path.

If you browse to a component file that is not on the path, then, when you try to select it, a File Not On
Path dialog opens. Click Add to add the appropriate directory to the MATLAB path.

The Add button is similar to the addpath command, that is, it adds the folder to the path only for the
duration of the current MATLAB session. If you do not save the path and then open the model in a
subsequent session, the Simscape Component block becomes unresolved.

If the source component is located in the current working directory, then there is no requirement for
it to be on the path. However, if you later try to open the model from another directory, the Simscape
Component block also becomes unresolved.
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It is good practice to keep the source component files that you want to reuse in a directory included
in your permanent search path. For more information, see “What Is the MATLAB Search Path?”.

See Also

Related Examples
• “Deploy a Component File in Block Diagram” on page 4-5
• “Switch Between Different Source Components” on page 4-9
• “Prototype a Component and Get Instant Feedback” on page 4-18

More About
• “Customizing the Block Name and Appearance” on page 4-33
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Deploy a Component File in Block Diagram
This example shows how you can quickly transform a Simscape component file into a block in your
model, without the extra steps of packaging the file and building a custom library.

Suppose you have the following Simscape file, named my_resistor, in your working directory:
component my_resistor
% Linear Resistor
% The voltage-current (V-I) relationship for a linear resistor is V=I*R,
% where R is the constant resistance in ohms.
%
% The positive and negative terminals of the resistor are denoted by the
% + and - signs respectively.

  nodes
    p = foundation.electrical.electrical; % +:left
    n = foundation.electrical.electrical; % -:right
  end
  variables
    i = { 0, 'A' };     % Current
    v = { 0, 'V' };     % Voltage
  end
  parameters
    R = { 1, 'Ohm' };   % Resistance
  end

  branches
    i : p.i -> n.i;
  end

  equations
    assert(R>0)
    v == p.v - n.v;
    v == i*R;
  end

end

Tip This component implements a linear resistor. It is described in more detail in “Model Linear
Resistor in Simscape Language” on page 1-3. You can copy the source from this page and save it as
my_resistor.ssc in your working directory.

To deploy this component as a block in your model:

1 Open or create a model.
2 Open the Simscape > Utilities library and add the Simscape Component block to your model. At

first, the block does not point to any component file. Therefore, it does not have any ports, and
the block icon states it is Unspecified.

3 Double-click the block to open the source file selector dialog box.
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4
Click  to open the browser. The browser opens in the current working directory and lists only
the files with the .ssc or .sscp extension. Select the my_resistor.ssc file and click Open.
The name of the source file appears in the text field of the source file selector dialog box, and the
block name, description, and the link to source code appear in the preview pane.

Tip Instead of browsing, you can type my_resistor directly into the text field. In this case,
however, the preview pane does not automatically get updated. If you want to preview the block

name, description, or source code, click .
5 Click Apply. The block icon and dialog box get updated, based on the selected source

component.
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See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3
• “Customize Block Display” on page 4-45
• “Switch Between Different Source Components” on page 4-9
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• “Prototype a Component and Get Instant Feedback” on page 4-18

More About
• “Selecting Component File Directly from Block” on page 4-3
• “Customizing the Block Name and Appearance” on page 4-33
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Switch Between Different Source Components
This example shows how you can try out several variants of a component in your model by pointing
the Simscape Component block to different component files.

The component files used in this example are capacitor models with different levels of fidelity, to
allow exploration of the effect of losses and nonlinearity. The source files are part of your product
installation, located in the following package directory:
matlabroot/toolbox/physmod/simscape/simscapedemos/+Capacitors

where matlabroot is the MATLAB root directory on your machine, as returned by entering

matlabroot

in the MATLAB Command Window. For more information about these capacitor models, see “Case
Study — Basic Custom Block Library” on page 4-55.

To test capacitor models of different fidelity:

1 To create a new model with optimal settings for physical modeling, in the MATLAB Command
Window, type:

ssc_new
2 Open the Simscape > Utilities library and add the Simscape Component block to your model. At

first, the block does not point to any component file, therefore it does not have any ports and the
block icon says Unspecified.

3 Double-click the block to open the source file selector dialog box.

4
Click  and navigate to the directory containing the capacitor component files.
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5 Select the IdealCapacitor.ssc file and click Open. The name of the source file appears in the
text field of the source file selector dialog box, and the block name, description, and the link to
source code appear in the preview pane.

Note Because the component file resides in a package, the file name in the selector dialog box
field is the full name, starting from the package root.

6 Click OK. The block icon gets updated, based on the selected source component.
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Note The +Capacitors package directory contains image files, with the names corresponding
to the Simscape component files, that define customized block icons. Therefore, when you point
the Simscape Component block to the IdealCapacitor.ssc source file, it uses the
IdealCapacitor.jpg in the same directory as the block icon. For details, see “Customize the
Block Icon” on page 4-42.

7 Build the test model and connect the blocks as shown in the following diagram.

8 Open the scope and simulate the model.
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The Simscape Component block points to an ideal capacitor component. Simulation results show
that, when the switch is flipped at t=5 seconds, the capacitor delivers 2.5 A to the load.

9 To switch to another capacitor model, open the Simscape Component block dialog box and click
Choose source.
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The source file selector dialog box opens, displaying the preview of the currently selected
component.

10
Click  . The browser opens in the +Capacitors directory, because it contains the currently
selected component.

11 Select the IdealUltraCapacitor.ssc file and click Open. The name of the source file appears
in the text field of the source file selector dialog box, and the block name, description, and the
link to source code appear in the preview pane.
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12 Click OK. The block icon in the model diagram updates to reflect the new source component.

13 Rerun the simulation.
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Simulation results show that, when the switch is flipped at t=5 seconds, the current delivered to
the load is less than 2.5 A.

14 To make the effect more pronounced, open the block dialog box and increase the Rate of
change of C with voltage V parameter value to 0.8 F/V.
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See Also

Related Examples
• “Deploy a Component File in Block Diagram” on page 4-5
• “Prototype a Component and Get Instant Feedback” on page 4-18

More About
• “Selecting Component File Directly from Block” on page 4-3
• “Customizing the Block Name and Appearance” on page 4-33
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Prototype a Component and Get Instant Feedback
This example shows how you can interactively modify the component source and get instant feedback
on the resulting block implementation.

To have the block reflect the changes to the underlying source, right-click the block icon and, from
the context menu, select Simscape > Refresh source code. If you make a mistake (for example,
omit the end keyword) when editing the component source, then when you refresh the block, the
compiler issues a diagnostic error message, pointing to the appropriate line in the code.

1 Open the Simscape > Foundation Library > Electrical > Electrical Elements > Variable Resistor
block dialog box and click the Source code link. The underlying source code opens in the Editor
window.
component variable_resistor
% Variable Resistor :1.5
% Models a linear variable resistor. The relationship between voltage V
% and current I is V=I*R where R is the numerical value presented at the
% physical signal port R. The Minimum resistance parameter prevents
% negative resistance values.
%
% Connections + and - are conserving electrical ports corresponding to
% the positive and negative terminals of the resistor respectively. The
% current is positive if it flows from positive to negative, and the
% voltage across the resistor is given by V(+)-V(-).

% Copyright 2005-2020 The MathWorks, Inc.

inputs
    R = { 0.0, 'Ohm' }; % R:left
end

nodes
    p = foundation.electrical.electrical; % +:left
    n = foundation.electrical.electrical; % -:right
end

parameters
    Rmin = { 0, 'Ohm' }; % Minimum resistance R>=0
end

variables
    i = { 0, 'A' }; % Current
    v = { 0, 'V' }; % Voltage
end

branches
    i : p.i -> n.i;
end

intermediates
     power_dissipated = v*i;
end

equations
    assert(Rmin>=0)
    v == p.v - n.v;
    if R > Rmin
        v == i*R;
    else
        v == i*Rmin;
    end
end

end

2 Change the component name in the first line:
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component my_var_res
3 Save the source code as a file called my_var_res.ssc in your current working directory.
4 To create a new model with optimal settings for physical modeling, in the MATLAB Command

Window, type:

ssc_new
5 Open the Simscape > Utilities library and add the Simscape Component block to your model. At

first, the block does not point to any component file, therefore it does not have any ports and the
block icon says Unspecified.

6 Double-click the block to open the source file selector dialog box. Type my_var_res into the text
field.

7 Click OK. The block icon gets updated, reflecting the selected source component. It now has two
conserving electrical ports, + and –, and a physical signal input port PS.

8 Double-click the block to open its dialog box. At this point, it has the same block name,
description, parameters, and variables, as the Variable Resistor block in the Foundation library.
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9 Click the Source code link to start editing the source code. Change the block name and
description:

component my_var_res
% Variable Resistor with Energy Sensor
% Variable linear resistor that outputs total electrical energy.

10 To have the block reflect the changes to the underlying source, right-click the block icon and,
from the context menu, select Simscape > Refresh source code. The block dialog box updates
accordingly.
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11 Declare the output e and add the equation calculating total electrical energy. The component
source now looks like this:

component my_var_res
% Variable Resistor with Energy Sensor
% Variable linear resistor that outputs total electrical energy.

inputs
    R = { 0.0, 'Ohm' }; % PS:left
end

outputs
    e = { 0, 'J' };
end

nodes
    p = foundation.electrical.electrical; % +:left
    n = foundation.electrical.electrical; % -:right
end

parameters
    Rmin = { 0, 'Ohm' }; % Minimum resistance R>=0
end

variables
    i = { 0, 'A' }; % Current
    v = { 0, 'V' }; % Voltage
end

branches
    i : p.i -> n.i;
end

equations
    assert(Rmin>=0)
    v == p.v - n.v;
    if R > Rmin
        v == i*R;
    else
        v == i*Rmin;
    end
    e == integ(v*i);
end
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end

12 Refresh the block again. The block icon now has an additional physical signal output port e.

13 Connect the block to a simple test rig to verify the correct performance.
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Note There is a limitation that the name of the model cannot be the same as the name of the
source file for the Simscape Component block. Therefore, if you save the test rig model, make
sure to give it a different name, such as my_var_res_test.

See Also

Related Examples
• “Model Linear Resistor in Simscape Language” on page 1-3
• “Customize Block Display” on page 4-45
• “Deploy a Component File in Block Diagram” on page 4-5
• “Switch Between Different Source Components” on page 4-9

More About
• “Selecting Component File Directly from Block” on page 4-3
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• “Customizing the Block Name and Appearance” on page 4-33
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Building Custom Block Libraries

In this section...
“Workflow Overview” on page 4-25
“Organizing Your Simscape Files” on page 4-25
“Using Source Protection for Simscape Files” on page 4-26
“Converting Your Simscape Files” on page 4-26

Workflow Overview
To generate a custom block library from Simscape component files, follow these steps:

1 Organize your Simscape files on page 4-25. Simscape files must be saved in package
directories. The package hierarchy determines the resulting library structure.

2 Optionally, provide source protection on page 4-26. If you want to share your models with
customers without disclosing the component or domain source, you can generate Simscape
protected files and share those.

3 Build the custom block library on page 4-26. You can use either the regular Simscape source
files or Simscape protected files to do this. Each top-level package generates a separate custom
Simscape block library.

Once you generate the custom Simscape library, you can open it and drag the customized blocks from
it into your models.

Organizing Your Simscape Files
Simscape files must be saved in package directories. The important points are:

• The package directory name must begin with a + character.
• The rest of the package directory name (without the + character) must be a valid MATLAB
identifier.

• The package directory's parent directory must be on the MATLAB path.

Each package where you store your Simscape files generates a separate custom block library.

Package directories may be organized into subdirectories, with names also beginning with a +
character. After you build a custom block library, each such subdirectory will appear as a sublibrary
under the top-level custom library.

For example, you may have a top-level package directory, named +SimscapeCustomBlocks, and it
has three subdirectories, +Electrical, +Hydraulic, and +Mechanical, each containing Simscape
files. By default, the custom block library generated from this package will be called
SimscapeCustomBlocks_lib (you can specify a different name). The library will have three
sublibraries with names corresponding to the package subdirectories (Electrical, Hydraulic, and
Mechanical). For information on building custom block libraries, see “Converting Your Simscape
Files” on page 4-26.
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Using Source Protection for Simscape Files
If you need to protect your proprietary source code when sharing the Simscape files, use one of the
following commands to generate Simscape protected files:

• ssc_protect — Protects individual files and directories. Once you encrypt the files, you can
share them without disclosing the component or domain source. Use them, just as you would the
Simscape source files, to build custom block libraries with the ssc_build command.

• ssc_mirror — Creates a protected copy of a whole package in a specified directory. Setting a
flag lets you also build a custom block library from the protected files and place it in the mirror
directory, thus eliminating the need to run the ssc_build command. Use the ssc_mirror
command to quickly prepare a whole package for sharing with your customers, without disclosing
the component or domain source.

Unlike Simscape source files, which have the extension .ssc, Simscape protected files have the
extension .sscp and are not humanly-readable. You can use them, just as the Simscape source files,
to build custom block libraries. Protected files have to be organized in package directories, in the
same way as the Simscape source files. For information on organizing your files, see “Organizing Your
Simscape Files” on page 4-25. For information on building custom block libraries, see “Converting
Your Simscape Files” on page 4-26.

Converting Your Simscape Files
After you have created the textual component files and organized them in package directories, you
need to convert them into Simscape blocks to be able to use them in block diagrams. You do this by
running the ssc_build command on the top-level package directory containing your Simscape files.
The package may contain either the regular Simscape source files or Simscape protected files on
page 4-26.

For example, you may have a top-level package directory, where you store your Simscape files, named
+SimscapeCustomBlocks. You can generate a custom block library either from the package parent
directory, or from a directory inside the package. From the package parent directory, at the MATLAB
command prompt, type:

ssc_build SimscapeCustomBlocks;

Note The package directory name begins with a leading + character, whereas the argument to
ssc_build must omit the + character.

This command generates a Simulink model file called SimscapeCustomBlocks_lib in the parent
directory of the top-level package (that is, in the same directory that contains your
+SimscapeCustomBlocks package). Because this directory is on the MATLAB path, you can open
the library by typing its name at the MATLAB command prompt. In our example, type:

SimscapeCustomBlocks_lib 

The model file generated by running the ssc_build command is the custom Simscape library
containing all the sublibraries and blocks generated from the Simscape files located in the top-level
package. Once you open the custom Simscape library, you can drag the customized blocks from it into
your models.
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When building a custom library from a package, ssc_build lets you specify a different name and
location for the library file than the default ones. For more information, see ssc_build.

Creating Sublibraries

Package directories may be organized into subdirectories, with names also beginning with a +
character. After you run the ssc_build command, each such subdirectory will appear as a
sublibrary under the top-level custom library. You can customize the name and appearance of
sublibraries by using library configuration files.

Note When you add or modify component files in package subdirectories, you still run the
ssc_build command on the top-level package directory. This updates all the sublibraries.

You may have more than one top-level package directory, that is, more than one package directory
located in a directory on the MATLAB path. Each top-level package directory generates a separate
top-level custom library.

See Also
ssc_build | ssc_mirror | ssc_protect

Related Examples
• “Create a Custom Block Library” on page 4-31

More About
• “Customizing the Library Name and Appearance” on page 4-29
• “When to Rebuild a Custom Library” on page 4-28
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When to Rebuild a Custom Library
You need to rebuild the custom Simscape libraries:

• Whenever you modify the source files.
• For use on each platform. Textual component files are platform-independent, but Simscape blocks

are not. If you (or your customers) run MATLAB on multiple platforms, generate a separate
version of custom block libraries for each platform by running the ssc_build or ssc_mirror
command on this platform.

• For use with each new version of Simscape software. Every time you or your customers upgrade
to a new release, you or they have to run ssc_clean and then rebuild the custom block libraries.
For information on how to protect your proprietary source code when sharing the Simscape files
with customers, see “Using Source Protection for Simscape Files” on page 4-26.
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Customizing the Library Name and Appearance
In this section...
“Library Configuration Files” on page 4-29
“Customizing the Library Icon” on page 4-30

Library Configuration Files
Package names must be valid MATLAB identifiers. The top-level package always generates a library
model with the name package_name_lib. However, library configuration files let you provide
descriptive library names and specify other customizations for sublibraries, generated from
subdirectories in the package hierarchy.

A library configuration file must be located in the package directory and named lib.m.

Library configuration files are not required. You can choose to provide lib.m for some subpackages,
all subpackages, or for none of the subpackages. If a subpackage does not contain a lib.m file, the
sublibrary is built using the default values. The top-level package can also contain a lib.m file.
Options such as library name, and other options that do not make sense for a top-level library, are
ignored during build. However, having a file with the same name and options in the top-level package
provides a uniform mechanism that lets you easily change the library hierarchy.

The following table describes the supported options. The only option that is required in a lib.m file is
Name; others are optional.

Option Usage Description Default For Top-
Level
Package

Name libInfo.Name =
name

name will be used as the name of the
sublibrary (name of the Simulink
subsystem corresponding to the
sublibrary)

Package
name

Ignored

Annotation libInfo.Annotation
= annotation

annotation will be displayed as
annotation when you open the sublibrary.
It can be any text that you want to display
in the sublibrary.

No
annotation in
the library

Used in
annotation
for top-level
library

ShowIcon libInfo.ShowIcon =
false

If there is no library icon file lib.img, as
described in “Customizing the Library
Icon” on page 4-30, this option is
ignored. If there is an icon file, you can
choose to not use it by setting this option
to false.

true Ignored
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Option Usage Description Default For Top-
Level
Package

ShowName libInfo.ShowName =
true

Allows you to configure whether the
sublibrary name is shown in the parent
library. If there is no library icon file, then
the default library icon contains the
library name, and showing it again is
redundant. If you are using a library icon
file, set showName to true to display the
library name below the icon.

false Ignored

Hidden libInfo.Hidden =
true

Allows you to configure whether the
sublibrary is visible in the parent library.
Use this option for a sublibrary containing
blocks that you do not want to expose, for
example, those kept for compatibility
reasons.

false Ignored

Customizing the Library Icon
If a subpackage contains a file named lib.img, where img is one of the supported image file formats
(such as jpg , bmp, or png), then that image file is used for the icon representing this sublibrary in
the parent library. The icon file (lib.img) and customization file (lib.m) are independent, you can
provide one or the other, both, or none.

The following image file formats are supported:

• jpg
• bmp
• png

If there are multiple image files, the formats take precedence in the order listed above. For example,
if a subpackage contains both lib.jpg and lib.bmp, lib.jpg is the image that will appear in the
parent library.

You can turn off customizing the library icon by setting showIcon to false in the library
customization file lib.m. In this case, the default library icon will be used. For more information, see
“Library Configuration Files” on page 4-29.

See Also

Related Examples
• “Create a Custom Block Library” on page 4-31

More About
• “Building Custom Block Libraries” on page 4-25
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Create a Custom Block Library
This example illustrates how you can convert a package of Simscape component files into a custom
block library, containing sublibraries with customized names and appearance. It summarizes the
techniques described in “Organizing Your Simscape Files” on page 4-25, “Converting Your Simscape
Files” on page 4-26, and “Customizing the Library Name and Appearance” on page 4-29.

Consider the following directory structure:

- +MySimscapeLibrary 
|-- +MechanicalElements 
| |-- lib.m 
| |-- lib.jpg 
| |-- inertia.ssc 
| |-- spring.ssc 
|-- +ElectricalElements  
| |-- ...
|-- +HydraulicElements  
| |-- ...

This means that you have a top-level package called +MySimscapeLibrary, which contains three
subpackages, +MechanicalElements, +ElectricalElements, and +HydraulicElements. The
+MechanicalElements package contains two component files, inertia.ssc and spring.ssc, a
library icon file lib.jpg, and the following library configuration file lib.m:
function lib ( libInfo )
libInfo.Name = 'Basic Mechanical Elements';
libInfo.Annotation = sprintf('This library contains basic mechanical elements');
libInfo.ShowName = true;

When you run

ssc_build MySimscapeLibrary;

the top-level package generates a library model called MySimscapeLibrary_lib, as follows:

Notice that the sublibrary generated from the +MechanicalElements package is presented in its
parent library with a customized icon and name (Basic Mechanical Elements).

If you double-click the Basic Mechanical Elements sublibrary, it opens as follows:
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Customizing the Block Name and Appearance
In this section...
“Default Block Display” on page 4-33
“Customize the Block Name” on page 4-34
“Describe the Block Purpose” on page 4-35
“Specify Meaningful Names for the Block Parameters and Variables” on page 4-36
“Group and Reorder Block Parameters Using Annotation” on page 4-37
“Customize the Names and Locations of the Block Ports” on page 4-38
“Customize the Block Icon” on page 4-42

Default Block Display
When you generate a custom block from a Simscape component file, the block name and the
parameter and variable names in the block dialog box are derived from the component file elements.
The default block icon is a rectangle displaying the block name. Ports are based on the nodes, inputs,
and outputs defined in the component file.

The following example shows a component file, named spring.ssc, and the resulting library block
and dialog box.

component spring
  nodes
    r = foundation.mechanical.rotational.rotational;
    c = foundation.mechanical.rotational.rotational;
  end
  parameters
    k = { 10, 'N*m/rad' };
  end
  variables
    theta = { 0, 'rad' };
    t = { 0, 'N*m' };
    w = { 0, 'rad/s' };
  end
  branches
    t : r.t -> c.t;
  end
  equations
    assert(k>0)
    w == r.w - c.w;
    t == k * theta;
    w == theta.der;
  end
end
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If you click the Source code link, the spring.ssc file opens in the MATLAB Editor window.

The following sections show you how to annotate the component file to improve the block cosmetics.
You can provide meaningful names for the block itself and for its parameters and variables in the
dialog box, as well as supply a short description of its purpose. You can also substitute a custom block
icon for the default image and change the names and the default orientation of the ports.

Customize the Block Name
To provide a more descriptive name for the block than the name of the component file, put it on a
separate comment line just below the component declaration. The comment line must begin with the
% character. The entire content of this line, following the % character, is interpreted as the block name
and appears exactly like that in the block icon and at the top of the block dialog box.

For example, if you have the following component file:

component spring
%Rotational Spring
...
end

these are the resulting block icon and dialog box:
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Describe the Block Purpose
The previous section on page 4-34 describes how the comment line immediately following the
component declaration is interpreted as the block name. Any additional comments below that line
are interpreted as the block description. You can have more than one line of description comments.
Each line must be no longer than 80 characters and must begin with the % character. The entire
content of description comments will appear in the block dialog box and in the Library Browser.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
end

this is the resulting block dialog box:

To create a paragraph break in the block description, use a blank commented line:
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% end of one paragraph
% 
% beginning of the next paragraph

Specify Meaningful Names for the Block Parameters and Variables
You can specify the name of a block parameter, the way you want it to appear in the block dialog box,
as a comment immediately following the parameter declaration. It can be located on the same line or
on a separate line. The comment must begin with the % character.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
 parameters
    k = { 10, 'N*m/rad' }; % Spring rate
 end
...
end

this is the resulting block dialog box:

Use the same technique to specify meaningful names for the top-level public variables of the
component. These variables appear on the Variables tab of the block dialog box, and giving them
descriptive names helps with the block-level variable initialization prior to simulation.

For example, if you have the following component file:
component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
  variables
    theta = { value = { 0 , 'rad' }, priority = priority.high }; % Deformation
    t = { 0, 'N*m' };   % Torque
    w = { 0, 'rad/s' }; % Angular velocity
  end
...
end

the resulting Variables tab of the block dialog box looks like this:
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Group and Reorder Block Parameters Using Annotation
By default, custom block generated from a component has all the component parameters with
ExternalAccess=modify listed in declaration order in a single tab, titled Parameters. If there are
variables with ExternalAccess=modify, the block dialog also contains a separate Variables tab.
Similarly, in the Property Inspector, parameters and variables are listed in declaration order in two
separate tree nodes, Parameters and Variables.

For complex components with large numbers of parameters, you can enhance the block usability by
grouping parameters based on their function or on the effect that they model. For example, you can
separate electrical and mechanical parameters for a motor, or place all temperature-dependent
parameters in a separate group. You do this by using the block layout annotation, UILayout.

UILayout annotation lets you define titled groups of component parameters, the order of these
groups, and the order of parameters in each group. When you deploy the component as a custom
Simscape block, these groups translate into dialog box tabs (and into Property Inspector tree nodes).

The block layout annotation syntax is:
  annotations
    UILayout = [UIGroup("Title 1",p1,p2)
                UIGroup("Title 2",p3)]
  end

The following rules apply:

• UILayout is a class-level annotation, meaning that it can appear only once per component file.
• UILayout annotation must contain a nonempty array of UIGroup constructs. The order of the

groups defines the order of the dialog box tabs.
• Each UIGroup construct must include a title string and a nonempty comma-separated list of

component parameters. The title string serves as the title of the dialog box tab, and the listed
parameters appear on that tab, in list order.

• Component parameters with ExternalAccess=modify not listed in any of the groups appear at
the end of the first tab in declaration order.

• A parameter cannot belong to more than one group. Listing the same parameter in multiple
groups results in an error.

• This annotation does not affect component variables. Whether you use the block layout annotation
or not, variables are listed on a separate Variables tab in declaration order.
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Use the block layout annotation to:

• Create multiple tabs in a block dialog box. To do this, define multiple groups of parameters. Each
group is displayed on a separate tab.

• Change the parameter order in the block dialog box, compared to the declaration order. To do this,
define one group of parameters, titled "Parameters", and list the component parameters in
desired order.

This feature makes authoring the component source independent of the resulting block layout. You
can arrange parameter declaration blocks in a way that helps code readability, and later reorder
parameters in the block interface, as needed. For a detailed example, see “Use Advanced Techniques
to Customize Block Display” on page 4-47.

Customize the Names and Locations of the Block Ports
Block ports, both conserving and Physical Signal, are based on the nodes, inputs, and outputs defined
in the component file. The default port label corresponds to the name of the node, input, or output, as
specified in the declaration block. The default location of all ports is on the left side of the block icon.
The ports are spread equidistantly along the block side.

There are two ways to control the port label and location in the block icon:

• Use separate controls for port labels and locations. This is the recommended way because it
provides more flexibility. Specify the port labels by using comments immediately following the
node, input, or output declaration, similar to specifying meaningful names for parameters and
variables. Specify the port side separately, by using the annotations section in the component
file. For more information, see “Customize Port Labels on the Block Icon” on page 4-38 and
“Control Port Locations Using Annotations” on page 4-39.

• Use comments immediately following the node, input, or output declaration, to specify both the
name and location of the block port. This is a legacy method that allows you to have ports only on
two opposite sides of the block icon (left and right, or top and bottom). For more information, see
“Use Comments to Control Port Locations” on page 4-40.

Customize Port Labels on the Block Icon

The default port label corresponds to the name of the node, input, or output, as specified in the
declaration block. Similar to specifying meaningful names for block parameters and variables, you
can customize a port label by supplying a comment immediately following the node, input, or output
declaration. For example:

  nodes
    p = foundation.electrical.electrical; % +
    n = foundation.electrical.electrical; % -  
  end

If you specify an empty comment string after a node, input, or output declaration, the corresponding
port will not have its name displayed. For example, the following syntax suppresses the port label for
the physical signal input port PS:

  inputs
     PS; %
  end
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Control Port Locations Using Annotations

Use the annotations section in the component file to specify the port locations. For example:
  nodes
    H = foundation.thermal.thermal;
    p = foundation.electrical.electrical; % +
    n = foundation.electrical.electrical; % -
  end
  annotations
    H : Side = top;
    p : Side = left;
    n : Side = right;
  end

Rules and restrictions:

• You can use Side annotations for nodes, inputs, and outputs.
• Member attributes must be uniquely defined. Therefore, you cannot use the same member ID on

the left side of the Side annotations more than once.
nodes
    p = foundation.electrical.electrical; 
    n = foundation.electrical.electrical; 
end
annotations
     [p, n] : Side = left;
     n : Side = right;   % error: multiple definitions for 'Side' of port 'n'
end

If you specify different locations for the same port by using both the annotations and the
comments, the location in the annotations section takes precedence.
outputs
  o = {0, 'V'}; %o:right
end
annotations
   o : Side = top;  % annotation takes precedence, so port will be located on the top
end

• You can use the same member ID multiple times to declare different annotation attributes.

nodes
    n1 = foundation.electrical.electrical;
    n2 = foundation.electrical.electrical;
    n3 = foundation.electrical.electrical;
end
annotations
    [n1, n2] : ExternalAccess = none;
    [n2, n3] : Side = right;
end

• Similarly, you can declare different annotation attributes for the same member ID in one
statement.

nodes
    n1 = foundation.electrical.electrical;
    n2 = foundation.electrical.electrical;
    n3 = foundation.electrical.electrical;
end
annotations
    [n1, n2] : ExternalAccess = none, Side = top;
    n3 : Side = right;
end
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• You cannot conditionally switch port sides, that is, include Side annotations in branches of a
conditional statement.
parameters
    thermal_effects = false; % Model thermal effects?
end
nodes (ExternalAccess=none)
   H = foundation.thermal.thermal; 
end
if thermal_effects 
  % Expose thermal port
    annotations
       H : ExternalAccess = modify;
       H : Side = bottom; % error: cannot have 'Side' annotations inside conditional sections
    end
end

To place a conditionally visible port on a specific side of the block (for example, on the bottom),
use the following syntax:

parameters
    thermal_effects = false; % Model thermal effects?
end
nodes (ExternalAccess=none)
   H = foundation.thermal.thermal; 
end
annotations
   H : Side = bottom; 
end
if thermal_effects 
  % Expose thermal port
    annotations
       H : ExternalAccess = modify;
    end
end

Use Comments to Control Port Locations

Note This is a legacy method that has multiple limitations. Therefore, the recommended method is to
use the annotations section, as described in “Control Port Locations Using Annotations” on page 4-
39.

You can also use a comment that immediately follows the node, input, or output declaration to specify
both the port label and location. The comment can be on the same line or on a separate line. The
comment must begin with the % character and be of the format label:location, where label is a
string corresponding to the input port name in the block diagram, and location is one of the
following strings: left, right, top, bottom. You can locate all ports either on one side of the block
or on two opposite sides, for example left and right, or top and bottom. You can omit the location if
you want to keep the default location of the port (on the left side).

You can also leave the port label field empty and specify just the location. In this case, the port will
not have its name displayed. For example, the following syntax suppresses the port label and locates
it on the top of the block icon:

    r = foundation.mechanical.rotational.rotational; % :top

If you specify an empty comment string after a node, input, or output declaration, the corresponding
port will not be labeled and will be located on the left side of the block icon.
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The following are examples of node declarations and the resulting block icons.

Syntax Block Icon
nodes
   r = foundation.mechanical.rotational.rotational; 
   c = foundation.mechanical.rotational.rotational; 
end 

nodes
   r = foundation.mechanical.rotational.rotational; % rod
   c = foundation.mechanical.rotational.rotational; % case
end 

nodes
   r = foundation.mechanical.rotational.rotational; 
   c = foundation.mechanical.rotational.rotational; % c:right
end 

nodes
   r = foundation.mechanical.rotational.rotational; % rod
   c = foundation.mechanical.rotational.rotational; % case:right
end 

nodes
   r = foundation.mechanical.rotational.rotational; % rod
   c = foundation.mechanical.rotational.rotational; % :right
end 

nodes
   r = foundation.mechanical.rotational.rotational; % 
   c = foundation.mechanical.rotational.rotational; % case:right
end 
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Customize the Block Icon
The default block icon is a rectangle displaying the block name. You can replace this default icon with
a custom image file. For information on supported file formats and image properties, see “Supported
File Formats” on page 4-43.

There are two ways to specify a custom block icon:

• Explicitly, using the annotations section in the component file. This is the recommended way
because it provides more flexibility. You can keep the image files in a separate folder and specify
relative paths for the block icons. You can also specify conditional custom icons for different block
variants. For more information, see “Using Annotations” on page 4-42.

• Implicitly, using the file naming conventions. This method is convenient if you ship complete
library packages to customers. For more information, see “Using File Naming Conventions” on
page 4-42.

Using Annotations

Use the annotations section in the component file to specify the name of the custom block icon.
The file name must contain the file extension. For example:

  annotations
    Icon = 'custom_spring.jpg';
  end

The file name can include a relative path from the folder containing the component file to the folder
containing the image file, for example:

  annotations
    Icon = '../../block_icons/custom_spring.jpg';
  end

The annotations section also lets you specify conditional custom icons. This is especially useful if
the number of ports changes for different variants. For example:

component MyPipe
  parameters
    thermal_variant = false; % Model thermal effects?
  end
  if thermal_variant 
  % Use icon with additional thermal port
    annotations
       Icon = 'pipe_thermal.jpg';
    end
  else
  % Use regular icon, with two fluid ports
    annotations
       Icon = 'pipe.jpg';
    end
  end
  [...] % Other parameters, variables, nodes, branches, equations
end

Using File Naming Conventions

Instead of explicitly specifying a custom block icon using the annotations section, you can do it
implicitly, by placing an image file with the same name as the component in the folder containing the
component file.
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This method is convenient if you ship complete library packages to customers. For example, if the
subpackage containing the component file spring.ssc also contains a file named spring.jpg, then
that image file is automatically used for the icon representing this block in the custom library.

The implicit rules for using custom block icons are:

1 If the annotations section does not explicitly specify a custom icon image, or if that image is
not found, the software looks in the folder containing the component file for an image file with
the same name as the component.

2 If there are multiple image files with the same name, the formats take precedence in the order
listed in “Supported File Formats” on page 4-43. For example, if the subpackage contains both
spring.jpg and spring.bmp, spring.jpg is the image that will appear in the custom library.

Supported File Formats

The following image file formats are supported for custom block icons:

• svg
• jpg
• bmp
• png

Caution Using svg format together with domain-specific line styles can lead to unexpected results,
because domain line styles and colors can propagate to parts of the custom block icon. For more
information on turning domain-specific line styles on and off, see “Domain-Specific Line Styles”.

The image type must be an RGB (truecolor) image, stored as an m-by-n-by-3 data array. For more
information, see “RGB (Truecolor) Images”.

Specifying Scaling and Rotation Properties of the Custom Block Icon

When you use an image file to represent a component in the custom block library, the following
syntax in the component file lets you specify the scaling and rotation properties of the image file:

component name
% [ CustomName [ : scale [ : rotation ] ] ] 
...

where

name Component name
CustomName Customized block name, specified as described in “Customize the

Block Name” on page 4-34. Leading and trailing white spaces are
removed.
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scale A scalar number, for example, 2.0, which specifies the desired scaling
of the block icon. When an image file is used as a block icon, by default
its shortest size is 40 pixels, with the image aspect ratio preserved. For
example, if your custom image is stored in a .jpg file of 80x120 pixels,
then the default block icon size will be 40x60 pixels. If you specify a
scale of 0.5, then the block icon size will be 20x30 pixels.

You cannot specify MATLAB expressions for the scale, just numbers.
rotation Specifies whether the block icon rotates with the block:

• rotates means that the icon rotates when you rotate the block.
This is the default behavior.

• fixed means that the ports rotate when you rotate the block, but
the icon always stays in default orientation.

For example, the following syntax

component spring
% Rotational Spring : 0.5 : fixed

specifies that the spring image size is scaled to half of its default size and always stays in its default
orientation, regardless of the block rotation.

See Also
annotations

Related Examples
• “Customize Block Display” on page 4-45
• “Use Advanced Techniques to Customize Block Display” on page 4-47
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Customize Block Display
This example shows a complete component file with annotation and the resulting library block and
dialog box. The image file, custom_spring.jpg, is located in the same folder as the component file.
This example is an illustration of basic techniques described in “Customizing the Block Name and
Appearance” on page 4-33.

component spring
% Rotational Spring
% This block implements a simple rotational spring.
  nodes
    r = foundation.mechanical.rotational.rotational; % rod
    c = foundation.mechanical.rotational.rotational; % case
  end
  annotations
    r : Side = left;
    c : Side = right;
    Icon = 'custom_spring.jpg';
  end
  parameters
    k = { 10, 'N*m/rad' }; % Spring rate
  end
  variables
    theta = { 0, 'rad' };  % Deformation
    t = { 0, 'N*m' };      % Torque
    w = { 0, 'rad/s' };    % Angular velocity
  end
  branches
    t : r.t -> c.t;
  end
  equations
    assert(k>0)
    w == r.w - c.w;
    t == k * theta;
    w == theta.der;
  end
end
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See Also
annotations

More About
• “Customizing the Block Name and Appearance” on page 4-33
• “Use Advanced Techniques to Customize Block Display” on page 4-47
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Use Advanced Techniques to Customize Block Display
This example shows how you can use block layout annotation and enumerations to improve usability
of a custom block.

The following source code for the DCMotorWithTabs component includes declaration blocks for
nodes and user-visible parameters, as well as control logic and annotations. The source code in this
example does not include sections of code that have no effect on the block dialog box display, such as
other declarations, intermediates, branches, and equations.

component DCMotorWithTabs
% DC Motor
% This block represents the electrical and torque characteristics of a
% DC motor.
%
% When a positive current flows from the electrical + to - ports, a
% positive torque acts from the mechanical C to R ports. Motor torque
% direction can be changed by altering the sign of the back-emf
% constant.

nodes
    p = foundation.electrical.electrical; % +:top
    n = foundation.electrical.electrical; % -:bottom
    R = foundation.mechanical.rotational.rotational; % R:top
    C = foundation.mechanical.rotational.rotational; % C:bottom
end

parameters
    Ra = {3.9, 'Ohm'};          % Armature resistance
    La = {12e-6, 'H'};          % Armature inductance
    Kv = {0.072e-3, 'V/rpm'};   % Back-emf constant
    J = {0.01, 'g*cm^2'};       % Rotor inertia
    lam = {0, 'N*m/(rad/s)'};   % Rotor damping
    speed0 = {0, 'rpm'};        % Initial rotor speed
    i_noload = {0, 'A'};        % No-load current
    V_i_noload = {1.5, 'V'};    % DC supply voltage when measuring no-load current
end

% Rotor damping control parameter
parameters
    r_damp = damping.direct;    % Rotor damping parameterization
end

% Conditional parameter visibility for Rotor damping parameterization
if r_damp == damping.direct
    annotations
        [i_noload,V_i_noload]: ExternalAccess=none;
    end
else
    annotations
        [lam]: ExternalAccess=none;
    end
end

annotations
    UILayout = [UIGroup("Electrical Torque",Ra,La,Kv,r_damp,i_noload,V_i_noload)
                UIGroup("Mechanical",J,lam,speed0)]
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end

% Declarations with (ExternalAccess=none), branches, intermediates, equations

end

The UILayout annotation defines two groups, Electrical Torque and Mechanical, each with a
list of parameters. When you generate a block from the DCMotorWithTabs component, each
UIGroup becomes a tab in the block dialog box, the title string serves as the title of the tab, and
these parameters appear on that tab in listed order.

In addition, the DCMotorWithTabs component provides two methods to specify rotor damping:

• Directly, using the Rotor damping parameter
• By specifying no-load current values instead, using two other parameters: No-load current and

DC supply voltage when measuring no-load current

The if statement in the component source specifies the control logic for conditional parameter
visibility, depending on the selected value of the control parameter, r_damp (Rotor damping
parameterization). The control parameter uses an enumeration that is located in a separate file,
damping.m:

classdef damping < int32
   enumeration
     direct (0)
     derived (1)
   end
   methods(Static)
       function map = displayText()
         map = containers.Map;
         map('direct') = 'By damping value';
         map('derived') = 'By no-load current';
       end
   end
end

This enumeration file can be located either in same folder as the component file or on the MATLAB
path. For more information, see “Specifying Display Strings for Enumeration Members” on page 3-15.

In the resulting block dialog, the Rotor damping parameterization parameter has a drop-down list
of values:

• By damping value
• By no-load current

By damping value is the default value.

When you generate a block from the DCMotorWithTabs component, the block dialog box has two
tabs:
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If you set the Rotor damping parameterization parameter to By no-load current, two
additional parameters appear on the Electrical Torque tab, and the Rotor damping parameter on
the Mechanical tab is hidden.
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Note that in the Electrical Torque tab, the No-load current and DC supply voltage when
measuring no-load current parameters appear below the Rotor damping parameterization
parameter, even though they were declared earlier, in a separate declaration block. If the component
was not using the block layout annotation, you could have achieved the same effect by changing the
parameter declaration order, but that would have detracted from code readability.

See Also
annotations
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More About
• “Customizing the Block Name and Appearance” on page 4-33
• “Defining Conditional Visibility of Component Members” on page 2-83
• “Enumerations” on page 3-14
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Checking File and Model Dependencies
In this section...
“Why Check File and Model Dependencies?” on page 4-52
“Checking Dependencies of Protected Files” on page 4-52
“Checking Simscape File Dependencies” on page 4-52
“Checking Library Dependencies” on page 4-53
“Checking Model Dependencies” on page 4-53

Why Check File and Model Dependencies?
Each Simulink model requires a set of files to run successfully. These files can include referenced
models, data files, S-functions, and other files without which the model cannot run. These required
files are called model dependencies. The Dependency Analyzer allows you to analyze a model to
determine its model dependencies.

Similarly, Simscape files and custom libraries also depend on certain files to build successfully, or to
correctly visualize and execute in MATLAB. These files can include all component files for building a
library, domain files, custom image files for blocks or libraries, and so on.

Dependency analysis tools for Simscape files consist of the following command-line options:

• simscape.dependency.file — Return the set of existing full path dependency files and
missing files for a single Simscape file, for a specific dependency type.

• simscape.dependency.lib — Return the set of existing full path dependency files and missing
files for a Simscape custom library package. You can optionally specify dependency type and
library model file name.

• simscape.dependency.model — Return the set of Simscape related dependency files and
missing files for a given model containing Simscape and Simulink blocks.

The Dependency Analyzer also includes dependencies for the Simscape blocks present in the model.
For more information on the Dependency Analyzer, see “Analyze Model Dependencies”.

Checking Dependencies of Protected Files
If a package contains Simscape protected files, with the corresponding Simscape source files in the
same folder, the analysis returns the names of protected files and then analyzes the source files for
further dependencies. If the package contains Simscape protected files without the corresponding
source files, the protected file names are returned without further analysis.

This way, dependency information is not exposed to a model user, who has only protected files.
However, the developer, who has both the source and protected files, is able to perform complete
dependency analysis.

Checking Simscape File Dependencies
To check dependencies for a single Simscape file, use the function simscape.dependency.file.

For example, consider the following directory structure:
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- +MySimscapeLibrary 
|-- +MechanicalElements 
| |-- lib.m 
| |-- lib.jpg 
| |-- spring.ssc 
| |-- spring.jpg 
| |-- ...

The top-level package, +MySimscapeLibrary, is located in a directory on the MATLAB path.

To check dependencies for the file spring.ssc, type the following at the MATLAB command prompt:
[a, b] = simscape.dependency.file('MySimscapeLibrary.MechanicalElements.spring') 

This command returns two cell arrays of strings: array a, containing full path names of existing
dependency files (such as spring.jpg), and array b, containing names of missing files. If none of the
files are missing, array b is empty.

For more information, see the simscape.dependency.file function reference page.

Checking Library Dependencies
To check dependencies for a Simscape library package, use the function
simscape.dependency.lib.

For example, to return all dependency files for a top-level package +MySimscapeLibrary, change
your working directory to the folder containing this package and type the following at the MATLAB
command prompt:

[a, b] = simscape.dependency.lib('MySimscapeLibrary') 

If you are running this command from a working directory inside the package, you can omit the
library name, because it is the only argument, and type:

[a, b] = simscape.dependency.lib

This command returns two cell arrays of strings: array a, containing full path names of all existing
dependency files and array b, containing names of missing files. If none of the files are missing, array
b is empty.

To determine which files are necessary to share the library package, type:
[a, b] = simscape.dependency.lib('MySimscapeLibrary',simscape.DependencyType.Simulink) 

In this case, the arrays a and b contain all files necessary to build the library, run the models built
from its blocks, and visualize them correctly.

Checking Model Dependencies
To perform a complete dependencies check, open the model. On the Modeling tab of the Simulink
Toolstrip, in the Design section, click Dependency Analyzer. For more information, see “Analyze
Model Dependencies”.

To check dependencies on Simscape blocks and files only, use the function
simscape.dependency.model. For example, open the model dc_motor and type:
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[a b c d] = simscape.dependency.model('dc_motor') 

This command returns two cell arrays of strings and two lists of structures. Array a contains full path
names of all existing dependency files. Array b contains names of missing files. Structure lists c and d
indicate reference types for existing and missing reference files, respectively. Each structure includes
a field 'names' as a list of file names causing the reference, and a field 'type' as the reference type
for each file. Two reference types are used: 'Simscape component' indicates reference from a
model block. 'Simscape' indicates reference from a file.

If none of the files are missing, array b and list d are empty.
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Case Study — Basic Custom Block Library
In this section...
“Getting Started” on page 4-55
“Building the Custom Library” on page 4-55
“Adding a Block” on page 4-56
“Adding Detail to a Component” on page 4-56
“Adding a Component with an Internal Variable” on page 4-57
“Customizing the Block Icon” on page 4-59

Getting Started
This case study explains how to build your own library of custom blocks based on component files. It
uses an example library of capacitor models. The library makes use of the Simscape Foundation
electrical domain on page 6-4, and defines three simple components. For more advanced topics,
including adding multiple levels of hierarchy, adding new domains, and customizing the appearance
of a library, see “Case Study — Electrochemical Library” on page 4-60.

The example library comes built and on your path so that it is readily executable. However, it is
recommended that you copy the source files to a new directory, for which you have write permission,
and add that directory to your MATLAB path. This will allow you to make changes and rebuild the
library for yourself. The source files for the example library are in the following package directory:
matlabroot/toolbox/physmod/simscape/simscapedemos/+Capacitors

where matlabroot is the MATLAB root directory on your machine, as returned by entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +Capacitors to another name, for example
+MyCapacitors, so that your copy of the library builds with a unique name.

Building the Custom Library
To build the library, type

ssc_build MyCapacitors

in the MATLAB Command Window. If building from within the +MyCapacitors package directory,
you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

MyCapacitors_lib

For more information on the library build process, see “Building Custom Block Libraries” on page 4-
25.
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Adding a Block
To add a block, write a corresponding component file and place it in the package directory. For
example, the Ideal Capacitor block in your MyCapacitors_lib library is produced by the
IdealCapacitor.ssc file. Open this file in the MATLAB Editor and examine its contents.
component IdealCapacitor
% Ideal Capacitor
% Models an ideal (lossless) capacitor. The output current I is related
% to the input voltage V by I = C*dV/dt where C is the capacitance.

% Copyright 2008-2017 The MathWorks, Inc.

    nodes
        p = foundation.electrical.electrical; % +:top
        n = foundation.electrical.electrical; % -:bottom
    end

    parameters
        C = { 1, 'F' }; % Capacitance
    end

    variables
        i = { 0, 'A'   }; % Current
        v = {value = { 0, 'V' }, priority = priority.high}; % Voltage drop
    end

    branches
        i : p.i -> n.i; % Through variable i from node p to node n
    end

    equations
        assert(C > 0)
        v == p.v-n.v; % Across variable v from p to n
        i == C*v.der; % Capacitor equation
    end

end

First, let us examine the elements of the component file that affect the block appearance. Double-
click the Ideal Capacitor block in the MyCapacitors_lib library to open its dialog box, and compare
the block icon and dialog box to the contents of the IdealCapacitor.ssc file. The block name,
Ideal Capacitor, is taken from the comment on line 2. The comments on lines 3 and 4 are then taken
to populate the block description in the dialog box. The block ports are defined by the nodes section.
The comment expressions at the end of each line control the port label and location. Similarly in the
parameters section, the comments are used to define parameter names in the block dialog box. For
details, see “Customizing the Block Name and Appearance” on page 4-33.

Also notice that in the equation section there is an assert to ensure that the capacitance value is
always greater than zero. This is good practice to ensure that a component is not used outside of its
domain of validity. The Simscape Foundation library blocks have such checks implemented where
appropriate.

Adding Detail to a Component
In this example library there are two additional components that can be used for ultracapacitor
modeling. These components are evolutions of the Ideal Capacitor. It is good practice to
incrementally build component models, adding and testing additional features as they are added.
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Ideal Ultracapacitor

Ultracapacitors, as their name suggests, are capacitors with a very high capacitance value. The
relationship between voltage and charge is not constant, unlike for an ideal capacitor. Suppose a
manufacturer data sheet gives a graph of capacitance as a function of voltage, and that capacitance
increases approximately linearly with voltage from the 1 farad at zero volts to 1.5 farads when the
voltage is 2.5 volts. If the capacitance voltage is denoted v, then the capacitance can be approximated
as:

C = 1 + 0.2 · v

For a capacitor, current i and voltage v are related by the standard equation

i = Cdv
dt

and hence

i = (C0 + Cv · v)dv
dt

where C0 = 1 and Cv = 0.2. This equation is implemented by the following line in the equation section
of the Simscape file IdealUltraCapacitor.ssc:

i == (C0 + Cv*v)*v.der;

In order for the Simscape software to interpret this equation, the variables (v and i) and the
parameters (C0 and Cv) must be defined in the declaration section. For more information, see
“Declare Component Variables” on page 2-8 and “Declare Component Parameters” on page 2-13.

Adding a Component with an Internal Variable
Implementing some component equations requires the use of internal variables. An example is when
implementing an ultracapacitor with resistive losses. There are two resistive terms, the effective
series resistance R, and the self-discharge resistance Rd. Because of the topology, it is not possible to
directly express the capacitor equations in terms of the through and across variables i and v.
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Ultracapacitor with Resistive Losses

This block is implemented by the component file LossyUltraCapacitor.ssc. Open this file in the
MATLAB Editor and examine its contents.
component LossyUltraCapacitor
% Lossy Ultracapacitor
% Models an ultracapacitor with resistive losses. The capacitance C
% depends on the voltage V according to C = C0 + V*dC/dV. A
% self-discharge resistance is included in parallel with the capacitor,
% and an equivalent series resistance in series with the capacitor.

% Copyright 2008-2017 The MathWorks, Inc.

    nodes
        p = foundation.electrical.electrical; % +:top
        n = foundation.electrical.electrical; % -:bottom
    end

    parameters
        C0 = { 1, 'F' };    % Nominal capacitance C0 at V=0
        Cv = { 0.2, 'F/V'}; % Rate of change of C with voltage V
        R = {2, 'Ohm' };    % Effective series resistance
        Rd = {500, 'Ohm' }; % Self-discharge resistance
    end

    variables
        i = { 0, 'A'   }; % Current
        vc = {value = { 0, 'V' }, priority = priority.high}; % Capacitor voltage
    end

    branches
        i : p.i -> n.i; % Through variable i from node p to node n
    end

    equations
        assert(C0 > 0)
        assert(R > 0)
        assert(Rd > 0)
        let
            v = p.v-n.v; % Across variable v from p to n
        in
            i == (C0 + Cv*vc)*vc.der + vc/Rd; % Equation 1
            v == vc + i*R;                    % Equation 2
        end
    end

end

The additional variable is used to denote the voltage across the capacitor, vc. The equations can then
be expressed in terms of v, i, and vc using Kirchhoff’s current and voltage laws. Summing currents at
the capacitor + node gives the first Simscape equation:

i == (C0 + Cv*vc)*vc.der + vc/Rd;
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Summing voltages gives the second Simscape equation:

v == vc + i*R;

As a check, the number of equations required for a component used in a single connected network is
given by the sum of the number of ports plus the number of internal variables minus one. This is not
necessarily true for all components (for example, one exception is mass), but in general it is a good
rule of thumb. Here this gives 2 + 1 - 1 = 2.

In the Simscape file, the initial condition (initial voltage in this example) is applied to variable vc with
priority = priority.high, because this is a differential variable. In this case, vc is readily
identifiable as the differential variable as it has the der (differentiator) operator applied to it.

Customizing the Block Icon
The capacitor blocks in the example library MyCapacitors_lib have icons associated with them.

During the library build, if there is an image file in the directory with the same name as the Simscape
component file, then this is used to define the icon for the block. For example, the Ideal Capacitor
block defined by IdealCapacitor.ssc uses the IdealCapacitor.jpg to define its block icon. If
you do not include an image file, then the block displays its name in place of an icon. For details, see
“Customize the Block Icon” on page 4-42.
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Case Study — Electrochemical Library
In this section...
“Getting Started” on page 4-60
“Building the Custom Library” on page 4-60
“Defining a New Domain” on page 4-61
“Structuring the Library” on page 4-62
“Defining a Reference Component” on page 4-63
“Defining an Ideal Source Component” on page 4-63
“Defining Measurement Components” on page 4-64
“Defining Basic Components” on page 4-65
“Defining a Cross-Domain Interfacing Component” on page 4-67
“Customizing the Appearance of the Library” on page 4-68
“Using the Custom Components to Build a Model” on page 4-68
“References” on page 4-69

Getting Started
This case study explores more advanced topics of building custom Simscape libraries. It uses an
example library for modeling electrochemical systems. The library introduces a new electrochemical
domain and defines all of the fundamental components required to build electrochemical models,
including an electrochemical reference, through and across sensors, sources, and a cross-domain
component. The example illustrates some of the salient features of Physical Networks modeling, such
as selection of Through and Across variables and how power is converted between domains. We
suggest that you work through the previous section, “Case Study — Basic Custom Block Library” on
page 4-55, before looking at this more advanced example.

The example library comes built and on your path so that it is readily executable. However, it is
recommended that you copy the source files to a new directory, for which you have write permission,
and add that directory to your MATLAB path. This will allow you to make changes and rebuild the
library for yourself. The source files for the example library are in the following package directory:
matlabroot/toolbox/physmod/simscape/simscapedemos/+ElectroChem

where matlabroot is the MATLAB root directory on your machine, as returned by entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +ElectroChem to another name, for example
+MyElectroChem, so that your copy of the library builds with a unique name.

Building the Custom Library
To build the library, type

ssc_build MyElectroChem
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in the MATLAB Command Window. If building from within the +MyElectroChem package directory,
you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

MyElectroChem_lib

For more information on the library build process, see “Building Custom Block Libraries” on page 4-
25.

Defining a New Domain
Simscape software comes with several Foundation domains, such as mechanical translational,
mechanical rotational, electrical, hydraulic, and so on. Where possible, use these predefined domains.
For example, when creating new electrical components, use the Foundation electrical domain
foundation.electrical.electrical. This ensures that your components can be connected to
the standard Simscape blocks.

As an example of an application requiring the addition of a new domain, consider a battery where the
underlying equations involve both electrical and chemical processes [1 on page 4-69].

Electrochemical Battery Driving a Resistive Load R

Two half-cells are separated by a membrane that prevents the ions flowing between cells, and hence
electrons flow from the solid lead anode to the platinum cathode. The two half-cell reactions are:

Pb Pb2 + + 2e−

Fe2 + Fe3 + + e−

The current results in the lead being oxidized and the iron being reduced, with the overall reaction
given by:

Pb + 2Fe3 + Pb2 + + 2Fe2 +

The chemical reaction can be modeled using the network concepts of Through and Across variables
(for details, see “Basic Principles of Modeling Physical Networks”). The Through variable represents
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flow, and the Across variable represents effort. When selecting the Through and Across variables, you
should use SI units and the product of the two variables is usually chosen to have units of power.

In the electrochemical reactions, an obvious choice for the Through variable is the molar flow rate ṅ
of ions, measured in SI units of mol/s. The corresponding Across variable is called chemical potential,
and must have units of J/mol to ensure that the product of Through and Across variables has units of
power, J/s. The chemical potential or Gibb’s free energy per mol is given by:

μ = μ0 + RTlna

where μ0 is the standard state chemical potential, R is the perfect gas constant, T is the temperature,
and a is the activity. In general, the activity can be a function of a number of different parameters,
including concentration, temperature, and pressure. Here it is assumed that the activity is
proportional to the molar concentration defined as number of moles of solute divided by the mass of
solvent.

To see the electrochemical domain definition, open the Simscape file +MyElectroChem/
ElectroChem.ssc.

domain ElectroChem
% Electrochemical Domain
% Define through and across variables for the electrochemical domain

% Copyright 2008-2014 The MathWorks, Inc.

    variables
        % Chemical potential
        mu = { 1.0 'J/mol' };
    end

    variables(Balancing = true)
        % Molar flow
        ndot = { 1.0 'mol/s' };
    end

end

The molar fundamental dimension and unit is predefined in the Simscape unit registry. If it had not
been, then you could have added it with:

pm_adddimension('mole','mol')

Note The case study does not involve modifying the domain definition. However, if at a later point
you decide to modify this electrochemical domain definition and see the effect of these modifications
on the custom components, make sure to change all the node declarations in the component files
from ElectroChem.ElectroChem to MyElectroChem.ElectroChem. Otherwise, your component
files still point to the domain definition in the original package.

Structuring the Library
It is good practice to structure a library by adding hierarchy. To do this, you can subdivide the
package directory into subdirectories, each subdirectory name starting with the + character. If you
look at the +MyElectroChem directory, you will see that it has subdirectories +Elements,
+Sensors, and +Sources. Open the library by typing MyElectroChem_lib, and you will see the
three corresponding sublibraries.
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Defining a Reference Component
A physical network must have a reference block, against which Across variables are measured. So,
for example, the Foundation library contains the Electrical Reference block for the electrical domain,
Mechanical Rotational Reference block for the rotational mechanical domain, and so on. The
electrochemical zero chemical potential is defined by the component file +MyElectroChem/
+Elements/Reference.ssc.
component Reference
% Chemical Reference
% Port A is a zero chemical potential reference port.

% Copyright 2008-2016 The MathWorks, Inc.

    nodes
        A = ElectroChem.ElectroChem; % A:top
    end

    connections
        connect(A, *);
    end

end

The component has one electrochemical port, named A, located at the top of the block icon.

The component uses a connection to an implicit reference node:

connect(A, *);

For more information on component connections and the implicit reference node syntax, see
“Connections to Implicit Reference Node” on page 2-68.

Defining an Ideal Source Component
An ideal Across source provides a constant value for the Across variable regardless of the value of the
Through variable. In the electrical domain, this corresponds to the DC Voltage Source block in the
Foundation library. In the example library, the component file +MyElectroChem/+Sources/
ChemPotentialSource.ssc implements the equivalent source for the chemical domain.
component ChemPotentialSource
% Constant Potential Source
% Provides a constant chemical potential between ports A and B.

% Copyright 2008-2013 The MathWorks, Inc.

    nodes
        A = ElectroChem.ElectroChem; % A:top
        B = ElectroChem.ElectroChem; % B:bottom
    end

    parameters
        mu0 = {0, 'J/mol'}; % Chemical potential
    end

    variables(Access=private)
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        ndot = { 0, 'mol/s' }; % Molar flow rate
    end

    branches
        ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
    end

    equations
        let
            mu = A.mu - B.mu; % Across variable from A to B
        in
            mu == mu0;
        end
    end

end

The dual of an ideal Across source is an ideal Through source, which maintains the Through variable
to some set value regardless of the value of the Across variable. In the electrical domain, this
corresponds to the DC Current Source block in the Foundation library. In the example library, this
source is not implemented.

Defining Measurement Components
Every domain requires both a Through and an Across measurement block. In the example library, the
component file +MyElectroChem/+Sensors/SensorThrough.ssc implements a molar flow rate
sensor.
component SensorThrough
% Molar Flow Sensor
% Returns the value of the molar flow between the A and the B port
% to the physical signal port PS.

% Copyright 2008-2013 The MathWorks, Inc.

    nodes
        A = ElectroChem.ElectroChem; % A:top
        B = ElectroChem.ElectroChem; % B:bottom
    end

    outputs
        out  = { 0, 'mol/s' }; % PS:top
    end

    variables(Access=private)
        ndot = { 0, 'mol/s' }; % Molar flow rate
    end

    branches
        ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
    end

    equations
        let
            mu = A.mu - B.mu; % Across variable from A to B
        in
            mu == 0;     % No potential drop
            out == ndot; % Equate value of molar flow to PS output
        end
    end

end

The flow rate is presented as a Physical Signal, which can then in turn be passed to Simulink via a
PS-Simulink Converter block. The branches section and the let statement in the equation section
define the relationship between Through and Across variables for the sensor. In this case, an ideal
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flow sensor has zero potential drop, that is mu == 0, where mu is the chemical potential. The second
equation assigns the value of the Through variable to the Physical Signal output.

The component file +MyElectroChem/+Sensors/SensorAcross.ssc implements a chemical
potential sensor.
component SensorAcross
% Chemical Potential Sensor
% Returns the value of the chemical potential across the A and B ports
% to the physical signal port PS.

% Copyright 2008-2013 The MathWorks, Inc.

    nodes
        A = ElectroChem.ElectroChem; % A:top
        B = ElectroChem.ElectroChem; % B:bottom
    end

    outputs
        out  = { 0, 'J/mol' }; % PS:top
    end

    variables(Access=private)
        ndot = { 0, 'mol/s' }; % Molar flow rate
    end

    branches
        ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
    end

    equations
        let
            mu = A.mu - B.mu; % Across variable from A to B
        in
            ndot == 0; % Draws no molar flow
            out == mu; % Equate value of chemical potential difference to PS output
        end
    end

end

The chemical potential is presented as a Physical Signal, which can then in turn be passed to
Simulink via a PS-Simulink Converter block. The branches section and the let statement in the
equation section define the relationship between Through and Across variables for the sensor. In this
case, an ideal chemical potential sensor draws no flow, that is ndot == 0, where ndot is the flow
rate. The second equation assigns the value of the Across variable to the Physical Signal output.

Defining Basic Components
Having created the measurement and reference blocks, the next step is to create blocks that define
behavioral relationships between the Through and Across variables. In the electrical domain, for
example, such components are resistor, capacitor, and inductor.

As an example of a basic electrochemical component, consider the chemical reduction or oxidation of
an ion, which can be thought of as the electrochemical equivalent of a nonlinear capacitor. The
defining equations in terms of Through and Across variables ν and μ are:

ṅ = ν

a = n
C0M

μ = μ0 + RTlna
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where n is the number of moles of the ion, C0 is the standard concentration of 1 mol/kg, and M is the
mass of the solute.

To see the implementation of these equations, open the file +MyElectroChem/+Elements/
ChemEnergyStore.ssc.
component ChemEnergyStore
% Chemical Energy Store :1 :fixed
% Represents a solution of dissolved ions. The port A presents the
% chemical potential defined by mu0 + log(n/(C0*M))*R*T where mu0 is the
% standard state oxidizing potential, n is the number of moles of the ion,
% C0 is the standard concentration of 1 mol/kg, M is the mass of solvent,
% R is the universal gas constant, and T is the temperature.

% Copyright 2008-2015 The MathWorks, Inc.

    nodes
        A = ElectroChem.ElectroChem; % A:top
    end

    parameters
        mu0 = {-7.42e+04, 'J/mol'}; % Standard state oxidizing potential
        m_solvent = {1, 'kg'};      % Mass of solvent
        T = {300, 'K'};             % Temperature
    end

    parameters (Access=private)
        R = {8.314472, '(J/K)/mol'}; % Universal gas constant
        C0 = {1, 'mol/kg'};          % Standard concentration
        n1 = {1e-10, 'mol'};         % Minimum number of moles
    end

    variables
        ndot = { 0, 'mol/s' }; % Molar flow rate
        n  = {value = { 0.01, 'mol' }, priority = priority.high}; % Quantity of ions
    end

    branches
        ndot : A.ndot -> *; % Through variable ndot
    end

    equations
        n.der == ndot;
        if n > n1
            A.mu == mu0 + log(n/(C0*m_solvent))*R*T;
        else
            A.mu == mu0 + (log(n1/(C0*m_solvent)) + n/n1 - 1)*R*T;
        end
    end

end

This component introduces two Simscape language features not yet used in the blocks looked at so
far. These are:

• Use of a conditional statement in the equation section. This is required to prevent taking the
logarithm of zero. Hence if the molar concentration is less than the specified level n1, then the
operand of the logarithm function is limited. Without this protection, the solver could perturb the
value of n to zero or less.

• Definition of private parameters that can be used in the equation section. Here the Universal Gas
constant (R) and the Standard Concentration (C0) are defined as private parameters. Their values
could equally well be used directly in the equations, but this would reduce readability of the
definition. Similarly, the lower limit on the molar concentration n1 is also defined as a private
parameter, but could equally well have been exposed to the user.
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Defining a Cross-Domain Interfacing Component
Cross-domain blocks allow the interchange of energy between domains. For example, the Rotational
Electromechanical Converter block in the Foundation library converts between electrical and
rotational mechanical energy. To relate the two sets of Through and Across variables, two equations
are required. The first comes from an underlying physical law, and the second from summing the
powers from the two domains into the converter, which must total zero.

As an example of an interfacing component, consider the electrochemical half-cell. The chemical
molar flow rate and the electrical current are related by Faraday’s law, which requires that:

ν = i
zF

where ν is the molar flow rate, i is the current, z is the number of electrons per ion, and F is the
Faraday constant. The second equation comes from equating the electrical and chemical powers:

V2− V1 i = μ2− μ1 ν

which can be rewritten as:

V2− V1 = μ2− μ1
ν
i =

μ2− μ1
zF

This is the Nernst equation written in terms of chemical potential difference, (μ2 – μ1). These
chemical-electrical converter equations are implemented by the component file +MyElectroChem/
+Elements/Chem2Elec.ssc.
component Chem2Elec
% Chemical to Electrical Converter
% Converts chemical energy into electrical energy (and vice-versa)
% assuming no losses. The electrical current flow i is related to the
% molar flow of electrons ndot by i = -ndot*z*F where F is the Faraday
% constant and z is the number of exchanged electrons.

% Copyright 2008-2017 The MathWorks, Inc.

    nodes
        p = foundation.electrical.electrical; % +:top
        n = foundation.electrical.electrical; % -:top
        A = ElectroChem.ElectroChem;  % A:bottom
        B = ElectroChem.ElectroChem;  % B:bottom
    end

    parameters
        z = {1, '1'};                % Number of exchanged electrons
    end

    parameters(Access=private)
        F = {9.6485309e4, 'C/mol'};  % Faraday constant
    end

    variables
        i = { 0, 'A'   };      % Current
        ndot = { 0, 'mol/s' }; % Molar flow rate
    end

    branches
        i   : p.i    -> n.i;    % Through variable i from node p to node n
        ndot: A.ndot -> B.ndot; % Through variable ndot from node A to node B
    end

    equations
        let
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            k = 1/(z*F);
            v = p.v - n.v;    % Across variable v from p to n
            mu = A.mu - B.mu; % Across variable mu from A to B
        in
            v == k*mu;    % From equating power
            ndot == -k*i; % Balance electrons (Faraday's Law)
        end
    end

end

Note the use of the let-in-end construction in the component equations. An intermediate term k is
declared as

k = 1
zF

It is then used in both equations in the expression clause that follows.

This component has four ports but only two equations. This is because the component interfaces two
different physical networks. Each of the networks has two ports and one equation, thus satisfying the
requirement for n–1 equations, where n is the number of ports. In the case of a cross-domain
component, the two equations are coupled, thereby defining the interaction between the two physical
domains.

The Faraday constant is a hidden parameter, because it is a physical constant that block users would
not need to change. Therefore, it will not appear in the block dialog box generated from the
component file.

Customizing the Appearance of the Library
The library can be customized using lib.m files. A lib.m file located in the top-level package
directory can be used to add annotations. The name of the top-level library model is constructed
automatically during the build process based on the top-level package name, as package_lib, but
you can add a more descriptive name to the top-level library as an annotation. For example, open
+MyElectroChem/lib.m in the MATLAB Editor. The following line annotates the top-level library
with its name:

libInfo.Annotation = sprintf('Example Electrochemical Library')

In the electrochemical library example, lib.m files are also placed in each subpackage directory to
customize the name and appearance of respective sublibraries. For example, open
+MyElectroChem/+Sensors/lib.m in the MATLAB Editor. The following line causes the sublibrary
to be named Electrochemical Sensors:

libInfo.Name = 'Electrochemical Sensors';

In the absence of the lib.m file, the library would be named after the subpackage name, that is,
Sensors. For more information, see “Library Configuration Files” on page 4-29.

Using the Custom Components to Build a Model
The “Battery Cell with Custom Electrochemical Domain” example uses the electrochemical library to
model a lead-iron battery. See the example help for further information.
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Language Reference

across Establish relationship between component variables and nodes
annotations Control appearance of Simscape block based on the component
assert Program customized run-time errors and warnings
branches Establish relationship between component Through variables and nodes
component Component model keywords
components Declare member components included in composite component
connect Connect two or more component ports of the same type
connections Define connections for member component ports in composite component
delay Return past value of operand
der Return time derivative of operand
domain Domain model keywords
edge Trigger event
entry Specify actions to be performed upon entering a mode
equations Define component equations
events Model discrete events
import Import model classes
initial Specify initial mode in mode chart
initialevent Initialize event variables
inputs Define component inputs, that is, Physical Signal input ports of block
integ Perform time integration of expression
intermediates Define intermediate terms for use in equations
modecharts Declare mode charts that include operating modes and transitions
modes Declare operating modes in mode chart
nodes Define component nodes, that is, conserving ports of block
outputs Define component outputs, that is, Physical Signal output ports of block
parameters Specify component parameters
setup (Not recommended) Prepare component for simulation
tablelookup Return value based on interpolating set of data points
through Establish relationship between component variables and nodes
time Access global simulation time
transitions Define transitions between modes in mode chart
value Convert variable or parameter to unitless value with specified unit conversion
variables Define domain or component variables
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across
Establish relationship between component variables and nodes

Syntax
across( variable1, node1.variableA, node2.variableB )

Description

Note across will be removed in a future release. Use equations instead. For more information, see
“Define Relationship Between Component Variables and Nodes” on page 2-23.

across( variable1, node1.variableA, node2.variableB ) establishes the following
relationship between the three arguments: variable1 is assigned the value (node1.variableA –
node2.variableB). All arguments are variables. The first one is not associated with a node. The
second and third must be associated with a node.

The following rules apply:

• All arguments must have consistent units.
• The second and third arguments do not need to be associated with the same domain. For example,

one may be associated with a one-phase electrical domain, and the other with a 3-phase electrical.
• Either the second or the third argument may be replaced with [] to indicate the reference node.

Examples
If a component declaration section contains two electrical nodes, p and n, and a variable v = { 0,
'V' }; specifying voltage, you can establish the following relationship in the setup section:

across( v, p.v, n.v );  

This defines voltage v as an Across variable from node p to node n.

See Also
through

Introduced in R2008b
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annotations
Control appearance of Simscape block based on the component

Syntax
annotations
   [Id1, Id2] : ExternalAccess=value;
   UILayout = [UIGroup("Title 1",p1,p2) UIGroup("Title 2",p3)] 
   Icon = 'filename';
   [port1, port2] : Side=value;
   [param1, param2] : UnitDropdown = common
end

Description
annotations begins the annotations section, which is terminated by an end keyword. The
annotations section in a component file lets you provide annotations that control various cosmetic
aspects of a Simscape block generated from this component.

Use the annotations section to:

• Define conditional visibility of component members, such as parameters, variables, nodes, inputs,
and outputs, in block icons and dialog boxes. Possible values are: modify, observe, and none.

• Specify block interface layout by defining titled groups of component parameters, the order of
these groups, and the order of parameters in each group. When you deploy the component as a
custom Simscape block, these groups translate into dialog box tabs (and into Property Inspector
tree nodes). UILayout is a class-level annotation, meaning that it can appear only once per
component file. For more information, see “Group and Reorder Block Parameters Using
Annotation” on page 4-37.

• Specify a custom block icon and change it based on the block variant.
• Control port location by placing it on a specific side of the block icon. Ports on a block icon

correspond to nodes, inputs, and outputs declared in the underlying component file. Possible
values are: left, right, top, and bottom.

• Prepopulate a unit drop-down list for a parameter in the block dialog box with commonly used
units.

Examples
The following example hides inapplicable parameters from the block dialog box based on the control
parameter value.
component MyPipe
  parameters
    circular  = true;             % Circular pipe?
    d_in      = { 0.01, 'm' };    % Pipe internal diameter
    area      = { 1e-4, 'm^2' };  % Noncircular pipe cross-sectional area
    D_h       = { 1.12e-2, 'm' }; % Noncircular pipe hydraulic diameter
  end
  if circular 
  % Hide inapplicable parameters
    annotations
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       [area, D_h] : ExternalAccess=none;
    end
    equations
       % First set of equations, for circular pipe 
    end
  else
  % Hide inapplicable parameter
    annotations
       d_in : ExternalAccess=none;
    end
    equations
       % Second set of equations, for noncircular pipe 
    end
  end
  [...] % Other parameters, variables, branches, equations
end

The next example exposes a thermal port H and changes the customized block icon based on the
control parameter value.

parameters
    thermal_effects = false; % Model thermal effects?
end
nodes (ExternalAccess=none)
   H = foundation.thermal.thermal; 
end
if thermal_effects 
  % Use icon with additional thermal port
    annotations
       H : ExternalAccess=modify;
       Icon = 'pipe_thermal.jpg';
    end
end

The following example customizes the names and locations of block ports. The block contains two
electrical ports, labeled + and -, located on the left and right sides of the block icon, respectively, and
a thermal port H, located on the top side.

nodes
    H = foundation.thermal.thermal; 
    p = foundation.electrical.electrical; % +
    n = foundation.electrical.electrical; % -
end
annotations
    H : Side = top;
    p : Side = left;
    n : Side = right;
end

Note You cannot conditionally switch port sides, that is, include Side annotations in branches of a
conditional statement. For more information, see “Control Port Locations Using Annotations” on page
4-39.

The next example specifies that the drop-down list for the Gain parameter includes a list of common
units, such as those available in the Simulink-PS Converter and the PS-Simulink Converter block
dialog boxes.

annotations
    Gain : UnitDropdown = common
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end
 

See Also
parameters | nodes | inputs | outputs | variables

Topics
“Defining Conditional Visibility of Component Members” on page 2-83
“Attribute Lists” on page 2-105
“Use Advanced Techniques to Customize Block Display” on page 4-47
“Customize the Block Icon” on page 4-42
“Customize the Names and Locations of the Block Ports” on page 4-38
“Physical Signal Unit Propagation”
“How to Specify Units in Block Dialogs”

Introduced in R2019a
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assert
Program customized run-time errors and warnings

Syntax
assert (predicate_condition, message, Action);

Description
The equations section may contain the assert construct, which lets you specify customized run-
time errors and warnings:

assert (predicate_condition, message, Action);

predicate_condition The expression to be evaluated at run time. It can be a function
of time, inputs, parameters, and variables.

message Optional text string (with single quotes) that tells the block user
why the run-time error or warning is triggered.

Action Optional attribute that specifies whether triggering the assert
results in a warning or an error during simulation. The default
action is error.

The Action attribute lets you specify the assert action based on an enumerated parameter value. A
built-in enumeration simscape.enum.assert.action allows three possible actions when the
assertion is triggered: error, warn, and none. You can provide an enumerated value directly to the
Action attribute:

assert(u > 0, Action = simscape.enum.assert.action.warn)

or create an enumerated parameter and let the block user control the assert action:

parameters
  assert_action = simscape.enum.assert.action.warn 
end

equations
  assert(u > 0, Action = assert_action)
end

You can use the assert construct in:

• The top-level equations, including initial equations.
• The if-elseif-else branches of a conditional expression.
• The expression clause and the right-hand side of the declaration clause of a let expression.

When you use an assert construct in a branch of a conditional expression, it is not counted towards
the number of expressions in the branch, and is therefore exempt from the general rule that the total
number of equation expressions, their dimensionality, and their order must be the same for every
branch of the if-elseif-else statement. For example, the following is valid:
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if x>1
     y == 1;
else
     assert(b > 0);
     y == 3;
end

The scope of the assert construct is defined by the scope of its branch. In the preceding example,
the predicate condition b > 0 is evaluated only when the else branch is in effect, that is, when x is
less than or equal to 1.

When you include assert constructs in initial equations, their predicate conditions are checked only
once, after solving for initial conditions (before the start of simulation, see “Initial Conditions
Computation”). Use these assertions to safeguard against the model initializing with nonphysical
values.

Examples
Run-Time Error

Generate a run-time error if the fluid volume in a reservoir becomes negative:

assert( V >= 0, 'Insufficient fluid volume for proper operation' );

During simulation, if the internal variable V (corresponding to the volume of fluid in the reservoir)
assumes a negative value, simulation stops and outputs an error message containing the following
information:

• Simulation time when the assertion got triggered
• The message string (in this example, Insufficient fluid volume for proper

operation)
• An active link to the block that triggered the assertion. Click the Block path link to highlight the

block in the model diagram.
• An active link to the assert location in the component source file. Click the Assert location

link to open the Simscape source file of the component, with the cursor at the start of violated
predicate condition. For Simscape protected files, the Assert location information is omitted
from the error message.

Run-Time Warning

If you do not want simulation to stop, but still want to display a warning that a certain condition has
been violated, set the Action attribute to simscape.enum.assert.action.warn. For example, if
hydraulic pressure drops below fluid vapor saturation level at some point, this condition may result in
cavitation and invalidate the modeling assumptions used in a block. You can add the following
assert construct to the hydraulic component equations:
assert( p > p_cav, 'Pressure is below vapor level; cavitation possible', 
                              Action = simscape.enum.assert.action.warn);

In this case, if the predicate condition is violated, the simulation continues, but outputs a warning
message. The format of the warning message is the same as of the error message described in the
previous example.

The warning message appears once, at the first time step when the predicate condition is violated. In
this example, the warning message appears at the first time step when the pressure drops below

 assert
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vapor level. As long as the pressure stays below that level, the message is not repeated at subsequent
time steps. However, as the simulation continues, if the pressure raises above the vapor saturation
level and then again drops below that level, the assertion gets reactivated and the warning message
appears once again.

User-Controllable Action

If you want to let the block user control the action upon triggering the assert, create an enumerated
parameter and set the Action attribute to be based on the value of this parameter.

For example, in a Stepper Motor block, you can let the block user decide upon the desired action
when the motor slips. Declare a control parameter, based on the built-in assert action enumeration,
and add the following assert construct to the component equations:

parameters
  assert_action = simscape.enum.assert.action.warn % Action on slipping
end

equations
  assert(slipping<1,'Stepper motor slip',Action = assert_action)
end

In this case, the default action is also a run-time warning, like in the previous example. However, the
block dialog contains an enumerated parameter, Action on slipping, with three possible values:
error, warn, none. This parameter lets the block user decide whether the simulation should stop
with an error, continue with a warning, or ignore the motor slips completely.

Compatibility Considerations
Assert Action Attribute
Behavior changed in R2019a

Prior to R2019a, you specified the assert action by using the Warn = true|false attribute. This
attribute still works. Currently, there are no plans to remove it.

Internally, the old attribute values are automatically mapped to the appropriate values of the new
Action attribute:

Old Syntax New Syntax
Warn = false Action = simscape.enum.assert.action.error
Warn = true Action = simscape.enum.assert.action.warn

You cannot use the Warn and Action attributes together in a single assert construct. When
authoring new components, use the Action attribute because it provides more flexibility.

See Also
equations

Topics
“Programming Run-Time Errors and Warnings” on page 2-50

Introduced in R2011b
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branches
Establish relationship between component Through variables and nodes

Syntax
branches a : node1.a -> node2.a; end

Description
branches begins the branches section, which is terminated by an end keyword. This section
contains one or more branch statements, which establish the relationship between the Through
variables of the component and the domain.

For example, a domain declaration contains a Through variable a:

variables(Balancing=true)
    a = { 0, 'N' }
end

and a component declares two nodes, node1 and node2, associated with this domain, and a variable
a:

variables
    a = { 0, 'N' };    
end

The name of the component variable does not have to match that of the domain variable, but the units
must be commensurate (in this example, 'N', 'kg*m/s^2', 'lbf', and so on).

To establish a connection between the component variable a and the domain Through (balancing)
variable a, write a branch statement, such as:

branches
    a : node1.a -> node2.a;    
end

node1.a and node2.a identify the conserving equations on node1 and node2, and the component
variable a is a term participating in those conserving equations. The branch statement declares that
a flows from node1 to node2. Therefore, a is subtracted from the conserving equation identified by
node1.a, and a is added to the conserving equation identified by node2.a.

A component can use each conserving equation identifier multiple times. For example, the component
declares the following variables and branches:

variables
  a1 = { 0, 'N' }
  a2 = { 0, 'N' }
  a3 = { 0, 'N' }
end

branches
  a1 : node1.a -> node2.a;
  a2 : node1.a -> node2.a;
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  a3 : node2.a -> node1.a;
end

Then, assuming that node1 and node2 are not referenced by any other branch or connect
statements, the conserving equations at these nodes are:

• For node1

- a1 - a2 + a3 == 0

• For node2

a1 + a2 - a3 == 0

The following rules apply:

• Each conserving equation belongs to a node associated with a domain. All variables participating
in that conserving equation must have commensurate units.

• A node creates one conserving equation for each of the Through (balancing) variables in the
associated domain. Branch statements do not create new equations. They add and subtract terms
in the existing conserving equations at the nodes.

• The second and third arguments do not need to be associated with the same domain. For example,
one can be associated with a gas domain, and the other with a thermal domain, with the heat flow
exchange defined by the branch statement.

• You can replace either the second or the third argument with * to indicate the reference node.
When you use *, the variable indicated by the first argument is still added to or subtracted from
the equation indicated by the other identifier, but no equation is affected by the *.

Examples
If a component declaration section contains two electrical nodes, p and n, and a variable i = { 0,
'A' }; specifying current, you can establish the following relationship in the branches section:

branches
   i : p.i -> n.i;
end 

This statement defines current i as a Through variable flowing from node p to node n.

For a grounding component, which has one electrical node V, define current i as a Through variable
flowing from node V to the reference node:

branches
   i : V.i -> *;
end 

For a mutual inductor or transformer, with primary and secondary windings, the branches section
must contain two statements, one for each winding:

branches
    i1 : p1.i -> n1.i;
    i2 : p2.i -> n2.i;
end 
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For a component such as a constant volume pneumatic chamber, where you need to establish the heat
flow exchange between the pneumatic and the thermal domains, the declaration section contains the
two nodes and the heat flow variable:

nodes
   A = foundation.pneumatic.pneumatic; 
   H = foundation.thermal.thermal; 
end 
variables
   h = { 0 , 'J/s' };
end

and the branches section establishes the heat flow exchange between the two domains:

branches
   h : A.Q -> H.Q;
end 

This statement defines the heat flow h as a Through variable flowing from the pneumatic node A,
associated with the chamber inlet, to the thermal node H, associated with the thermal mass of gas in
the chamber.

See Also
nodes | variables

Topics
“Define Relationship Between Component Variables and Nodes” on page 2-23

Introduced in R2013b
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component
Component model keywords

Syntax
component
nodes
inputs
outputs
parameters
variables
components
intermediates
branches
connections
equations
events
annotations

Description
component begins the component model class definition, which is terminated by an end keyword.
Only blank lines and comments can precede component. You must place a component model class
definition in a file of the same name with a file name extension of .ssc.

A component file consists of a declaration section, with one or more member declaration blocks,
followed by implementation sections, such as branches, equations, events, and so on. The order of
these sections does not matter.

Note The file can contain multiple instances of declaration blocks or implementation sections of the
same type, with the exception of the setup section. There may be no more than one setup section
per component. However, starting in R2019a, using setup is not recommended. For better
alternatives, see “setup is not recommended” on page 5-69.

The declarations section may contain any of the following member declaration blocks:

• nodes begins a nodes declaration block, which is terminated by an end keyword. This block
contains declarations for all the component nodes, which correspond to the conserving ports of a
Simscape block generated from the component file. Each node is defined by assignment to an
existing domain. See “Declare Component Nodes” on page 2-16 for more information.

• inputs begins an inputs declaration block, which is terminated by an end keyword. This block
contains declarations for all the inputs, which correspond to the input Physical Signal ports of a
Simscape block generated from the component file. Each input is defined as a value with unit on
page 2-5. See “Declare Component Inputs and Outputs” on page 2-18 for more information.

• outputs begins an outputs declaration block, which is terminated by an end keyword. This block
contains declarations for all the outputs, which correspond to the output Physical Signal ports of a
Simscape block generated from the component file. Each output is defined as a value with unit on
page 2-5. See “Declare Component Inputs and Outputs” on page 2-18 for more information.
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• parameters begins a component parameters declaration block, which is terminated by an end
keyword. This block contains declarations for component parameters. Parameters will appear in
the block dialog box when the component file is brought into a block model. Each parameter is
defined as a value with unit on page 2-5. See “Declare Component Parameters” on page 2-13 for
more information.

• variables begins a variables declaration block, which is terminated by an end keyword. This
block contains declarations for all the variables associated with the component. Variables will
appear on the Variables tab of a block dialog box when the component file is brought into a block
model.

Variables can be defined either by assignment to an existing domain variable or as a value with
unit on page 2-5. See “Declare Component Variables” on page 2-8 for more information.

• components begins a member components declaration block, which is terminated by an end
keyword. This block, used in composite models only, contains declarations for member
components included in the composite component. Each member component is defined by
assignment to an existing component file. See “Declaring Member Components” on page 2-61 for
more information.

• intermediates begins a declaration block of named intermediate terms, which is terminated by
an end keyword. This block contains declarations of intermediate terms that can be reused in any
equations section of the same component or of an enclosing composite component. See “Using
Intermediate Terms in Equations” on page 2-37 for more information.

branches begins the branches section, which is terminated by an end keyword. This section
establishes relationship between the Through variables of the component and the domain.
Relationship between the Across variables is established in the equation section. See “Define
Relationship Between Component Variables and Nodes” on page 2-23 for more information.

connections begins the structure section, which is terminated by an end keyword. This section,
used in composite models only, contains information on how the constituent components’ ports are
connected to one another, and to the external inputs, outputs, and nodes of the top-level component.
See “Specifying Component Connections” on page 2-66 for more information.

equations begins the equation section, which is terminated by an end keyword. This section
contains the equations that define how the component works. See “Defining Component Equations”
on page 2-26 for more information.

events begins the events section, which is terminated by an end keyword. This section manages the
event updates. See “Discrete Event Modeling” on page 2-54 for more information.

annotations begins the annotations section, which is terminated by an end keyword. This section
lets you provide annotations in a component file that control various cosmetic aspects of a Simscape
block generated from this component. See annotations for more information.

Table of Attributes

For component model attributes, as well as declaration member attributes, see “Attribute Lists” on
page 2-105.

Examples
This file, named spring.ssc, defines a rotational spring.
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component spring
  nodes
    r = foundation.mechanical.rotational.rotational;
    c = foundation.mechanical.rotational.rotational;
  end
  parameters
    k = { 10, 'N*m/rad' };
  end
  variables
    theta = { 0, 'rad' };
    t = { 0, 'N*m' };
    w = { 0, 'rad/s' };
  end
  branches
    t : r.t -> c.t;
  end
  equations
    assert(k>0)
    w == r.w - c.w;
    t == k * theta;
    w == theta.der;
  end
end

See Also
domain

Topics
“Creating Custom Components” on page 1-13

Introduced in R2008b
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components
Declare member components included in composite component

Syntax
components(ExternalAccess=observe)
    a = package_name.component_name;
end

Description
components begins a components declaration block, which is terminated by an end keyword. This
block, used in composite models only, contains declarations for member components included in the
composite component. A components declaration block must have its ExternalAccess attribute
value set to observe (for more information on member attributes, see “Attribute Lists” on page 2-
105).

Each member component is defined by assignment to an existing component file. See “Declaring
Member Components” on page 2-61 for more information.

The following syntax defines a member component, a, by associating it with a component file,
component_name. package_name is the full path to the component file, starting with the top
package directory. For more information on packaging your Simscape files, see “Building Custom
Block Libraries” on page 4-25.

components(ExternalAccess=observe)
    a = package_name.component_name;
end

After you declare all member components, specify how their ports are connected to one another, and
to the external inputs, outputs, and nodes of the top-level component. See “Specifying Component
Connections” on page 2-66 for more information.

Once you declare a member component, you can use its parameters and variables in the equation
section of the composite component file. If you want a parameter of the member component to be
adjustable, associate it with the top-level parameter of the composite component. See
“Parameterizing Composite Components” on page 2-62 for more information.

You can also use for loops to declare an array of member components and specify the component
connections. For more information, see “Component Arrays” on page 3-28.

Examples
The following example includes a Rotational Spring block from the Simscape Foundation library in
your custom component:

components(ExternalAccess=observe)
    rot_spring = foundation.mechanical.rotational.spring;
end
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The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the component file
spring.ssc.

Once you declare a member component, use its identifier (rot_spring) to refer to its parameters,
variables, nodes, inputs, and outputs, as they are defined in the member component file. For example,
rot_spring.spr_rate refers to the Spring rate parameter of the Rotational Spring block.

See Also
connections | parameters

Topics
“Declaring Member Components” on page 2-61

Introduced in R2012b
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connect
Connect two or more component ports of the same type

Syntax
connect(n1, n2);    

connect(s, d1);    

Description
The connect constructs describe both the conserving connections (between nodes) and the physical
signal connections (between the inputs and outputs). You can place a connect construct only
inside the connections block in a composite component file.

For a conserving connection, the syntax is

connect(n1, n2);

The construct can have more than two arguments. n1, n2, n3, and so on are nodes declared in the
composite component or in any of the member component files. The only requirement is that these
nodes are all associated with the same domain. The order of arguments does not matter. The
connect construct creates a physical conserving connection between all the nodes listed as
arguments.

The * symbol indicates a connection to an implicit reference node:

connect(n1, *);

For more information, see “Connections to Implicit Reference Node” on page 2-68.

For a physical signal connection, the syntax is

connect(s, d1);

The construct can have more than two arguments. All arguments are inputs and outputs declared
in the composite component or in any of the member component files. The first argument, s, is the
source port, and the remaining arguments, d1, d2, d3, and so on, are destination ports. The connect
construct creates a directional physical signal connection from the source port to the destination port
or ports. For example,

connect(s, d1, d2);

means that source s is connected to two destinations, d1 and d2. A destination cannot be connected
to more than one source. If a signal connect statement has more than one destination, the order of
destination arguments (d1, d2, and so on) does not matter.

The following table lists valid source and destination combinations.

 connect
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Source Destination
External input port of composite component Input port of member component
Output port of member component Input port of member component
Output port of member component External output port of composite component

If a member component is itself a composite component, the connect constructs can only access its
external nodes, not the internal nodes of its underlying members. For example, consider the following
diagram.

You are defining a composite component a, which consists of member components b and c.
Component c is in turn a composite component containing members d and e. Each component has
nodes n1 and n2.

The following constructs are legal:

connect(n1, c.n1);

connect(b.n1, c.n1);

However, the following constructs

connect(n1, c.d.n1);

connect(b.n1, c.d.n1);

are illegal because they are trying to access an underlying member component within the member
component c.

You can also use for loops to declare an array of member components and specify the component
connections. For more information, see “Component Arrays” on page 3-28.

Examples
In the following example, the composite component consists of three identical resistors connected in
parallel:

component ParResistors
  nodes
     p = foundation.electrical.electrical;
     n = foundation.electrical.electrical;
  end
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  parameters
    p1 = {3 , 'Ohm'};
  end
  components(ExternalAccess=observe)
    r1 = foundation.electrical.elements.resistor(R=p1);
    r2 = foundation.electrical.elements.resistor(R=p1);
    r3 = foundation.electrical.elements.resistor(R=p1);
  end
  connections
    connect(r1.p, r2.p, r3.p, p);
    connect(r1.n, r2.n, r3.n, n);
  end
end

See Also
connections

Topics
“Specifying Component Connections” on page 2-66

Introduced in R2012b
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connections
Define connections for member component ports in composite component

Syntax
connections connect(a, b); end     

Description
connections begins the structure section in a composite component file; this section is terminated
by an end keyword. It is executed once during compilation. The structure section contains
information on how the constituent components’ ports are connected to one another and to the
external inputs, outputs, and nodes of the top-level component. All member components declared in
the components declaration block are available by their names in the structure section.

The connections block contains a set of connect constructs, which describe both the conserving
connections (between nodes) and the physical signal connections (between the inputs and
outputs). To refer to a node, input, or output of a member component, use the syntax
comp_name.port_name, where comp_name is the identifier assigned to the member component in
the components declaration block and port_name is the name of the node, input, or output in the
member component file.

The following syntax connects node a of the composite component to node a of the member
component c1, node b of the member component c1 to node a of the member component c2, and
node b of the member component c2 to node b of the composite component.

   connections
      connect(a, c1.a);
      connect(c1.b, c2.a);
      connect(c2.b, b);
   end

See the connect reference page for more information on the connect construct syntax.

You can also use for loops to declare an array of member components and specify the component
connections. For more information, see “Component Arrays” on page 3-28.

Examples
This example implements a simple RC circuit that models the discharging of an initially charged
capacitor. The composite component uses the components from the Simscape Foundation library as
building blocks, and connects them as shown in the following block diagram.
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component CircuitRC
   outputs
     Out = { 0.0, 'V' }; % I:right
   end
   parameters
      p1 = {1e-6, 'F'};  % Capacitance
      p2 = {10, 'Ohm'};  % Resistance
   end
   components(ExternalAccess=observe)
      c1 = foundation.electrical.elements.capacitor(c=p1);
      VoltSensor = foundation.electrical.sensors.voltage;
      r1 = foundation.electrical.elements.resistor(R=p2);
      Grnd = foundation.electrical.elements.reference;
   end
   connections
      connect(Grnd.V, c1.n, r1.n, VoltSensor.n);
      connect(VoltSensor.p, r1.p, c1.p);
      connect(VoltSensor.V, Out);
   end
end

The connections block contains three connect constructs:

• The first one connects the negative ports of the capacitor, resistor, and voltage sensor to each
other and to ground

• The second one connects the positive ports of the capacitor, resistor, and voltage sensor to each
other

• The third one connects the physical signal output port of the voltage sensor to the external output
Out of the composite component

The resulting composite block has one physical signal output port, Out, and three externally
adjustable parameters in the block dialog box: Capacitance, Initial voltage, and Resistance.

See Also
connect

Topics
“Declaring Member Components” on page 2-61
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“Specifying Component Connections” on page 2-66

Introduced in R2012b
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delay
Return past value of operand

Syntax
delay(u,tau)
delay(u,tau, History = u0, MaximumDelay = taumax)

Description
Use the delay operator in the equations section to refer to past values of expressions:

delay(u,tau) = u(t-tau)

The full syntax is:

delay(u,tau, History = u0, MaximumDelay = taumax)

The required operands are:

• u — The first operand is the Simscape expression being delayed. It can be any numerical
expression that does not itself include delay or der operators.

• tau — The second operand is the delay time. It must be a numerical expression with the unit of
time. The value of tau can change, but it must remain strictly positive throughout the simulation.

The optional operands may appear in any order. They are:

• History — The return value for the initial time interval (t <= StartTime + tau). The units of u
and u0 must be commensurate. The default u0 is 0.

• MaximumDelay — The maximum delay time. taumax must be a constant or parametric expression
with the unit of time. If you specify MaximumDelay = taumax, a runtime error will be issued
whenever tau becomes greater than taumax.

Note You have to specify MaximumDelay if the delay time, tau, is not a constant or parametric
expression. If tau is a constant or parametric expression, its value is used as the default for
MaximumDelay, that is, taumax = tau.

At any time t, delay(u,tau) returns a value approximating u( t - tau) for the current value of tau.
More specifically, the expression delay(u,tau, History = u0) is equivalent to

if t <= (StartTime + tau)
   return u0(t)
else
   return u(t-tau)
end 

In other words, during the initial time interval, from the start of simulation and until the specified
delay time, tau, has elapsed, the delay operator returns u0 (or 0, if History is not specified). For
simulation times greater than tau, the delay operator returns the past value of expression, u( t -
tau).
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Note

• When simulating a model that contains blocks with delays, memory allocation for storing the data
history is controlled by the Delay memory budget [kB] parameter in the Solver Configuration
block. If this budget is exceeded, simulation errors out. You can adjust this parameter value based
on your available memory resources.

• For recommendation on how to linearize a model that contains blocks with delays, see
“Linearizing with Simulink Linearization Blocks”.

Examples
This example shows implementation for a simple dynamic system:

ẋ = − x t − 1
x t < 0 = 1

The Simscape file looks as follows:
component MyDelaySystem
  parameters
    tau = {1.0,'s'};
  end
  variables
    x = 1.0;
  end
  equations
    x.der == -delay( x,tau,History = 1.0 )*{ 1, '1/s' }; % x' = - x(t - 1)
  end
end

MaximumDelay is not required because tau is constant.

The { 1, '1/s' } multiplication factor is used to reconcile the units of expression and its time
derivative. See der reference page for more information.

For other examples of using the delay operator, see source for the PS Constant Delay and PS
Variable Delay blocks in the Simscape Foundation library (open the block dialog box and click the
Source code link).

The Variable Transport Delay example shows how you can model a variable transport delay using the
delay operator. To see the implementation details, open the example model, look under mask of the
Transport Delay subsystem, then right-click the Variable Transport Delay block and select Simscape
> View source code.

See Also
equations

Introduced in R2012a
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der
Return time derivative of operand

Syntax
der(x)
x.der

Description
The equations section may contain der operator, which returns the time derivative of its operand:

der(x) = x.der = ẋ = dx
dt

der operator takes any numerical expression as its argument:

• der applied to expressions that are continuous returns their time derivative
• der applied to time argument returns 1
• der applied to expressions that are parametric or constant returns 0
• der applied to countable operands returns 0. For example, der(a<b) returns 0 even if a and b

are variables.

The return unit of der is the unit of its operand divided by seconds.

You can nest der operators to specify higher order derivatives. For example, der(der(x))is the
second order time derivative of x.

The following restrictions apply:

• You cannot form nonlinear expressions of the output from der. For example, der(x)*der(x)
would produce an error because this is no longer a linearly implicit system.

• For a component to compile, the number of differential equations should equal the number of
differential variables.

Examples
This example shows implementation for a simple dynamic system:

ẋ = 1− x

The Simscape file looks as follows:

component MyDynamicSystem
  variables
    x = 0;
  end
  equations
    x.der == (1 - x)*{ 1, '1/s' };  % x' = 1 - x
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  end
end

The reason you need to multiply by { 1, '1/s' } is that (1-x) is unitless, while the left-hand side
(x.der) has the units of 1/s. Both sides of the equation statement must have the same units.

See Also
equations

Introduced in R2008b
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domain
Domain model keywords

Syntax
domain
variables
variables(Balancing = true)
parameters
intermediates

Description
domain begins the domain model class definition, which is terminated by an end keyword. Only blank
lines and comments can precede domain. You must place a domain model class definition in a file of
the same name with a file name extension of .ssc.

variables begins an Across variables declaration block, which is terminated by an end keyword.
This block contains declarations for all the Across variables associated with the domain. A domain
model class definition can contain multiple Across variables, combined in a single variables block.
This block is required.

variables(Balancing = true) begins a Through variables declaration block, which is
terminated by an end keyword. This block contains declarations for all the Through variables
associated with the domain. A domain model class definition can contain multiple Through variables,
combined in a single through block. This block is required.

Each variable is defined as a value with unit on page 2-5. See “Declare Through and Across Variables
for a Domain” on page 2-6 for more information.

parameters begins a domain parameters declaration block, which is terminated by an end keyword.
This block contains declarations for domain parameters. These parameters are associated with the
domain and can be propagated through the network to all components connected to the domain. This
block is optional.

See “Propagation of Domain Parameters” on page 2-100 for more information.

intermediates begins a declaration block of named intermediate terms, which is terminated by an
end keyword. This block contains declarations of intermediate terms that can be reused in equations
of components that have nodes of this domain type. This block is optional.

See “Using Intermediate Terms in Equations” on page 2-37 for more information.

Table of Attributes

For declaration member attributes, see “Attribute Lists” on page 2-105.
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Examples
This file, named rotational.ssc, declares a mechanical rotational domain, with angular velocity as
an Across variable and torque as a Through variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

  variables
    w = { 1 , 'rad/s' }; % angular velocity
  end

  variables(Balancing = true)
    t = { 1 , 'N*m' }; % torque
  end

end

This file, named t_hyd.ssc, declares a hydraulic domain, with pressure as an Across variable, flow
rate as a Through variable, and an associated domain parameter, fluid temperature.
domain t_hyd
  variables
    p = { 1e6, 'Pa' }; % pressure
  end
  variables(Balancing = true)
    q = { 1e-3, 'm^3/s' }; % flow rate
  end
  parameters
    t = { 303, 'K' }; % fluid temperature
  end
end

See Also
component

Topics
“When to Define a New Physical Domain” on page 1-11
“Foundation Domain Types and Directory Structure” on page 6-2

Introduced in R2008b
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edge
Trigger event

Syntax
edge(b)

Description
edge(b) takes a scalar boolean expression b as input. It returns true, and triggers an event, when
and only when the input argument changes value from false to true. The return data type of edge is
event. Event data type is a special category of boolean type, which returns true only instantaneously,
and returns false otherwise.

The following graphic illustrates the difference between boolean and event data types.

edge(b) returns true only when b changes from false to true.

You use the edge operator to define event predicates in when clauses. For more information, see
events.

Examples
edge(b) returns true when b changes from false to true, that is, triggers an event on the rising edge
of condition b.

To trigger an event on the falling edge of condition b, use edge(~b).

To trigger an event both on the rising edge and on the falling edge of condition b, use edge(b)||
edge(~b) as the event predicate in the when clause. For more information on data derivation rules
between boolean and event data types, see “Event Data Type and edge Operator” on page 2-54.

To trigger an event at a specific time, for example, 2 seconds after the start of simulation, use
edge(time>{2.0,'s'}).
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See Also
events | initialevent

Topics
“Discrete Event Modeling” on page 2-54
“Triggered Delay Component” on page 2-57
“Enabled Component” on page 2-58

Introduced in R2016a
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entry
Specify actions to be performed upon entering a mode

Syntax
entry v_old = v; end     

Description
The entry block, terminated by an end keyword, is an optional section inside a mode declaration
that lets you specify the actions to be performed upon entering the mode. These actions are event
variable updates based on the value of a continuous expression immediately before entering the
mode.

modes
    mode m
       entry
          v_old = v;
       end
       equations
       ...
       end
    end
end

The entry section is especially useful for modeling state reset because, in the majority of state reset
use cases, the reset value is a function of the previous value of the variable. For example, when
modeling a slider moving between two hard stops, the new velocity depends on the velocity before
impact. For more information and an example, see “State Reset Example” on page 3-11.

In each entry action, the left-hand side must be an event variable. The right-hand side is a continuous
expression, evaluated immediately before entering the mode. This expression can include any
combination of continuous variables, event variables, and intermediates.

You can use entry actions both in instantaneous and regular modes.

See Also
modecharts | modes | transitions | initial

Topics
“State Reset Modeling” on page 3-11
“Mode Chart Modeling” on page 3-2

Introduced in R2020b
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equations
Define component equations

Syntax
equations
   Expression1 == Expression2;
end

Description
equations begins the equation section in a component file; this section is terminated by an end
keyword. The purpose of the equation section is to establish the mathematical relationships among a
component’s variables, parameters, inputs, outputs, time and the time derivatives of each of these
entities. All members declared in the component are available by their name in the equation section.

The equation section of a Simscape file is executed throughout the simulation. You can also specify
equations that are executed during model initialization only, by using the (Initial=true) attribute.
For more information, see “Initial Equations” on page 5-37.

The following syntax defines a simple equation.

equations
   Expression1 == Expression2;
end

The statement Expression1 == Expression2 is an equation statement. It specifies continuous
mathematical equality between two objects of class Expression. An Expression is a valid MATLAB
expression. Expression may be constructed from any of the identifiers defined in the model
declaration.

The equation section may contain multiple equation statements. You can also specify conditional
equations by using if statements as follows:

equations
   if Expression 
       EquationList 
   { elseif Expression 
       EquationList } 
   else 
       EquationList 
   end
end

Note The total number of equation expressions, their dimensionality, and their order must be the
same for every branch of the if-elseif-else statement.

You can declare intermediate terms in the intermediates section of a component or domain file
and then use these terms in any equations section in the same component file, in an enclosing
composite component, or in a component that has nodes of that domain type.
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You can also define intermediate terms directly in equations by using let statements as follows:

equations
   let 
      declaration clause
   in 
      expression clause 
   end 
end

The declaration clause assigns an identifier, or set of identifiers, on the left-hand side of the equal
sign (=) to an equation expression on the right-hand side of the equal sign:

  LetValue = EquationExpression

The expression clause defines the scope of the substitution. It starts with the keyword in, and may
contain one or more equation expressions. All the expressions assigned to the identifiers in the
declaration clause are substituted into the equations in the expression clause during parsing.

Note The end keyword is required at the end of a let-in-end statement.

The following rules apply to the equation section:

• EquationList is one or more objects of class EquationExpression, separated by a comma,
semicolon, or newline.

• EquationExpression can be one of:

• Expression
• Conditional expression (if-elseif-else statement)
• Let expression (let-in-end statement)

• Expression is any valid MATLAB expression. It may be formed with the following operators:

• Arithmetic
• Relational (with restrictions, see “Use of Relational Operators in Equations” on page 2-27)
• Logical
• Primitive Math
• Indexing
• Concatenation

• In the equation section, Expression may not be formed with the following operators:

• Matrix Inversion
• MATLAB functions not listed in Supported Functions

• The colon operator may take only constants or end as its operands.
• All members of the component are accessible in the equation section, but none are writable.

The following MATLAB functions can be used in the equation section. The table contains additional
restrictions that pertain only to the equation section. It also indicates whether a function is
discontinuous. If the function is discontinuous, it introduces a zero-crossing when used with one or
more continuous operands.
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All arguments that specify size or dimension must be unitless constants or unitless compile-time
parameters.
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Supported Functions

Name Restrictions Discontinuous
ones   
zeros   
cat   
horzcat   
vertcat   
length   
ndims   
numel   
size   
isempty   
isequal  Possibly, if arguments are real

and have the same size and
commensurate units

isinf  Yes
isfinite  Yes
isnan  Yes
plus   
uplus   
minus   
uminus   
mtimes   
times   
mpower   
power   
mldivide First argument must be a scalar  
mrdivide Second argument must be a

scalar
 

ldivide   
rdivide   
mod  Yes
sum   
prod   
floor  Yes
ceil  Yes
fix  Yes
round  Yes
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Name Restrictions Discontinuous
eq Do not use with continuous

variables
 

ne Do not use with continuous
variables

 

lt   
gt   
le   
ge   
and  Yes
or  Yes
logical  Yes
sin   
cos   
tan   
asin   
acos   
atan   
atan2  Yes
log   
log10   
sinh   
cosh   
tanh   
exp   
sqrt   
abs  Yes
sign  Yes
any  Yes
all  Yes
min  Yes
max  Yes
double   
int32  Yes
uint32  Yes
repmat   
reshape Expanded empty dimension is

not supported
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Name Restrictions Discontinuous
dot   
cross   
diff In the two argument overload,

the upper bound on the second
argument is 4, due to a
Simscape limitation

 

Initial Equations

The (Initial=true) attribute lets you specify equations that are executed during model
initialization only:

equations (Initial=true)
   Expression1 == Expression2;
end

The default value of the Initial attribute for equations is false, therefore you can omit this
attribute when declaring regular equations.

For more information on when and how to specify initial equations, see “Initial Equations” on page 2-
33.

Examples
For a component where x and y are declared as 1x1 variables, specify an equation of the form y = x2:

equations
  y == x^2;
end

For the same component, specify the following piecewise equation:

y =
x for −1 < =  x < = 1
x2 otherwise 

This equation, written in the Simscape language, would look like:

equations
  if x >= -1 && x <= 1
    y == x;
  else
    y == x^2;
  end
end

If a function has multiple return values, use it in a let statement to access its values. For example:

equations
  let 
    [m, i] = min(a);
  in
    x == m;
    y == i;
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  end
end

See Also
assert | delay | der | function | integ | intermediates | tablelookup | time

Topics
“Defining Component Equations” on page 2-26
“Using Conditional Expressions in Equations” on page 2-35
“Using Intermediate Terms in Equations” on page 2-37

Introduced in R2009a
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events
Model discrete events

Syntax
events 
  when EventPredicate 
    AssignmentList 
  end 
end

Description
events begins the events section, which is terminated by an end keyword. The events section in a
component file manages event updates. It is executed throughout the simulation.

The events section can contain only when clauses.

The when clause serves to update the values of the event variables. The syntax is

when EventPredicate
  var1 = expr1; 
  var2 = expr2; 
  ...
end

EventPredicate is an expression that defines when an event occurs. It must be an expression of
event data type, as described in “Event Data Type and edge Operator” on page 2-54.

The variables in the body of the when clause must be declared as event variables on page 2-54. When
the event predicate returns true, all the variables in the body of the when clause simultaneously get
updated to the new values.

A when clause can optionally have one or more elsewhen branches:

when EventPredicate
  var1 = expr1; 
  var2 = expr2; 
  ...
elsewhen EventPredicate
  var1 = expr3; 
  ...
end

Note The default else branch in a when clause is illegal.

The following rules apply:

• The order of when clauses does not matter.
• The order of the variable assignments in the body of a when clause does not matter because all

updates happen simultaneously.
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• A when clause cannot update an event variable more than once within the same assignments list.
• Two independent when clauses may not update the same event variable. You must use an

elsewhen branch to do this.
• The order of elsewhen branches matters. If multiple predicates become true at the same point in

time, only the branch with the highest precedence is activated. The precedence of the branches in
a when clause is determined by their declaration order. That is, the when branch has the highest
priority, while the last elsewhen branch has the lowest priority.

See Also
edge | initialevent

Topics
“Discrete Event Modeling” on page 2-54
“Triggered Delay Component” on page 2-57
“Enabled Component” on page 2-58

Introduced in R2016a
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function
Reuse expressions in component equations and in member declarations of domains and components

Syntax
function out = FunctionName(in1,in2)
   definitions
      out = Expression1(in1,in2);
   end
end

Description
The function keyword begins the Simscape function declaration, which is terminated by an end
keyword.

The keyword function must be followed by the function header, which includes the function name,
inputs, and outputs.

The body of the function must be enclosed inside the definitions block, which is terminated by an
end keyword. The definitions block contains equations that express the output arguments of the
function in terms of its input arguments. This block is required.

The following syntax declares a simple function.

function out = FunctionName(in1,in2)
   definitions
      out = Expression1(in1,in2);
   end
end

If the function has multiple return values, the syntax is:

function [out1,out2] = FunctionName(in1,in2)

Depending on whether the Simscape function is a main or local function:

• Main function — You must place the function declaration in a file of the same name with a file
name extension of .ssc. The file name must match the function name. For example, function foo
must be in a file called foo.ssc. The file must begin with the function keyword. Only blank
lines and comments can precede function.

• Local function — Include the function declaration in a component, domain, or function file, after
the final end keyword that concludes the description of the component, domain, or main function.
The local function is accessible only by that component, domain, or main function.

Syntax Rules

• One or more output parameters are allowed.
• If an output parameter is not used on the left-hand side of the definitions section, you get an

error.
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• Zero or more input parameters are allowed.
• When the function is called, the number of input arguments must match the number of input

parameters.
• Input parameters are positional. This means that the first input argument during the function call

is passed to the first input parameter, and so on. For example, if you write an equation:

o == FunctionName(5,2);

then in1 is 5 and in2 is 2.
• If the function has multiple return values, they are also positional. That is, the first output

parameter gets assigned to the first return value, and so on.
• If the function has multiple return values, the rules and restrictions are the same as for

declaration functions. For more information, see “Multiple Return Values” on page 3-21.
• The definitions section can contain intermediate terms and if-elseif-else statements. The

same syntax rules as in the declaration section of a let statement apply. For more information,
see “Using Intermediate Terms in Equations” on page 2-37.

• The definitions section cannot contain expressions with dynamic semantics, such as integ,
time, der, edge, initialevent, or delay.

Packaging Rules for Function Files

• Simscape function files can reside directly on MATLAB path or in package directories. For more
information, see “Organizing Your Simscape Files” on page 4-25.

• You can use source protection, as described in “Using Source Protection for Simscape Files” on
page 4-26.

• Importing a package imports all the Simscape functions in this package. For more information, see
“Importing Domain and Component Classes” on page 2-111.

• If a MATLAB function and a Simscape function have the same name, the MATLAB function has
higher precedence.

Examples
Declare a function that computes the square of a sum of two numbers:

function out = SumSquared(in1,in2)
   definitions
      out = in1^2 + 2*in1*in2 + in2^2;
   end
end

Save the function in a file named SumSquared.ssc, on the MATLAB path.

This component calls the SumSquared function to compute the square of a sum of its parameters p1
and p2.

component MyComp
   outputs
      o = 0;
   end
   parameters
      p1 = 5;
      p2 = 2;
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   end
   equations
      o == SumSquared(p1,p2);
   end
end

For a more detailed example of declaring and using a main Simscape function, see the “Simscape
Functions” example.

For a detailed example of declaring and using a local Simscape function, see “Local Simscape
Functions” on page 3-26.

See Also
equations

Topics
“Simscape Functions” on page 3-24

Introduced in R2017b
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import
Import model classes

Syntax
import package_or_class;    

import package.*;    

Description
The import statements allow access to model class or function names defined in other scopes
(packages) without a fully qualified reference. You must place import statements at the beginning of
a Simscape file.

There are two types of import statement syntaxes. One is a qualified import, which imports a
specific package, class, or function:

import package_or_class;

The other one is an unqualified import, which imports all subpackages, classes, and functions under
the specified package:

import package.*;

The package or class name must be a full path name, starting from the library root (the top-level
package directory name) and containing subpackage names as necessary.

Import statements are subject to the following constraints:

• The imported name must be a full path name, starting from the library root, even if the import
statement is used in a component class defined under the same package as the domain or
component class that is being imported.

• You must place import statements at the beginning of a Simscape file. The scope of imported
names is the entire Simscape file, except the setup section.

• In qualified import statements, the imported name can refer to a subpackage, a model class
(domain class or component class), or a function. For example, in the import A.B.C; statement,
C can be either a subpackage name, a class name, or a function name. In unqualified import
statements, the imported name must refer to a package or subpackage. For example, in the
import A.B.*; statement, B must be a subpackage name (of package A).

• It causes a compilation error if an unqualified imported name is identical to other names within
the same scope, provided the duplicate name is in use. For example, assume that subpackages
A.B and A.B1 both contain a component class C. The following code:

import A.B.C;
import A.B1.*;
component M
   components (ExternalAccess=observe)
     c = C;
   end
end
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causes a compile-time error. However, the following code is legal (provided that D is defined only
in A.B) because C is not used:

import A.B.C;
import A.B1.*;
component M
   components (ExternalAccess=observe)
     d = D;
   end
end

This code is also legal:

import A.B;
import A.B1;
component M
   components
     c1 = B.C;
     c2 = B1.C;
   end
 end

because you import two different names into this scope (B and B1), and access the two different
component classes C through their parent classes B and B1.

Examples
In this example, the composite component consists of three identical resistors connected in parallel:

import foundation.electrical.electrical;  % electrical domain class definition
import foundation.electrical.elements.*;  % all electrical elements
component ParElResistors
  nodes
     p = electrical;
     n = electrical;
  end
  parameters
    p1 = {3 , 'Ohm'};
  end
  components(ExternalAccess=observe)
    r1 = resistor(R=p1);
    r2 = resistor(R=p1);
    r3 = resistor(R=p1);
  end
  connections
    connect(r1.p, r2.p, r3.p, p);
    connect(r1.n, r2.n, r3.n, n);
  end
end

See Also
Topics
“Importing Domain and Component Classes” on page 2-111
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Introduced in R2013b
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initial
Specify initial mode in mode chart

Syntax
initial init_mode : predicate_condition end     

Description
initial begins the initial mode construct in a mode chart. The construct is terminated by an end
keyword. It contains one statement with the following syntax:

init_mode : predicate_condition

where:

• init_mode is the mode active at the start of simulation if the expression in the
predicate_condition is true.

• If predicate_condition is false, then the first mode listed in the modes section is active at the
start of simulation.

The predicate_condition must be a parametric expression because it is evaluated at compile
time. Using a variable in a predicate results in a compile-time error.

The initial construct is optional. If a mode chart does not contain an initial construct, then the
first mode listed in the modes section is active at the start of simulation.

For example, a mode chart declares three modes, m1, m2, and m3:

modes
    mode m1
    ...
    end
    mode m2
    ...
    end
    mode m3
    ...
    end
end

By default, mode m1 is active at the start of simulation. If you include the following initial
construct:

initial
    m2 : p1
end

then, if the p1 predicate is true, simulation starts in mode m2; otherwise, in mode m1.

The initial construct can have multiple initial mode statements, for example:
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initial
    m2 : p1
    m3 : p2
end

In this case:

• If the p1 predicate is true, simulation starts in mode m2.
• If the p2 predicate is true, simulation starts in mode m3.
• If both predicates are true, simulation starts in mode m2 (the first one listed in the initial

section).
• If both predicates are false, simulation starts in mode m1 (the first one listed in the modes

section).

At initialization time, the solver sets the initial mode first, and then checks the transitions. If a
transition predicate is true at initialization time, the system might start in a different mode than that
specified by the initial construct. For example, consider a mode chart that declares three modes,
m1, m2, and m3, and defines the following transitions and initial modes:

transitions
    m3 -> m2 : p1
end
initial
    m2 : p2
    m3 : p3
end

If predicates p1 and p3 are both true at initialization time, the solver sets m3 as the initial mode, but
the system immediately transitions from mode m3 to mode m2, and simulation starts in mode m2.

See Also
modecharts | modes | transitions

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-5

Introduced in R2017a
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initialevent
Initialize event variables

Syntax
events 
  when initialevent 
    AssignmentList 
  end 
end

Description
initialevent lets you specify initial values of event variables at the start of simulation. The return
data type of initialevent is event, as described in “Event Data Type and edge Operator” on page
2-54. It returns true once during simulation, right after initialization of continuous variables is
finished.

The initialevent keyword is valid only inside a when clause predicate.

Examples
The PS Asynchronous Sample & Hold block in the Simscape Foundation library initializes the event
variable y_held, which holds the sampled signal, by using a block parameter.

This example implements an asynchronous sample and hold block where the y_held event variable is
initialized based on the value of the input physical signal IC at the start of simulation.

component ASHold
% Asynchronous Sample and Hold

inputs
   IC = {0.0, '1'}; % :left
    U = {0.0, '1'}; % :left
    T = {0.0, '1'}; % :left
end;

outputs 
    Y = {0.0, '1'}; % :right
end;

variables (Event = true, Access = private)
     y_held = {value = {0.0, '1'}, priority = priority.high}; 
end

equations
    Y == y_held;
end

events
    when initialevent
       y_held = IC;
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    elsewhen edge(T > 0)
       y_held = U; 
    end
end

end

See Also
edge | events

Topics
“Discrete Event Modeling” on page 2-54

Introduced in R2017b
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inputs
Define component inputs, that is, Physical Signal input ports of block

Syntax
inputs in1 = { value , 'unit' }; end  

inputs in1; end  

Description
inputs begins a component inputs definition block, which is terminated by an end keyword. This
block contains declarations for component inputs. Inputs will appear as Physical Signal input ports in
the block diagram when the component file is brought into a Simscape model.

Each input can be defined as:

• A value with unit on page 2-5, where value can be a scalar, vector, or matrix. For a vector or a
matrix, all signals have the same unit.

• An untyped identifier, to facilitate unit propagation.

Specifying an optional comment lets you control the port label and location in the block icon.

The following syntax declares a component input, in1, as a value with unit. value is the initial value.
unit is a valid unit string, defined in the unit registry.

inputs
    in1 = { value , 'unit' };
end

If you declare an input without a value and unit, as an untyped identifier, it propagates the signal type
(size and unit) based on the component connections in the model. Use the following syntax to declare
a component input, in1, as an untyped identifier.

inputs
    in1;
end

Note During ssc_build validation, or when an input is unconnected in a model, untyped inputs
receive the type of unitless scalar, that is, {0, '1'}. Therefore, a component with an untyped input
must support the type of the input being resolved to unitless scalar.

You can specify the input port label and location, the way you want it to appear in the block diagram,
as a comment:

inputs
    in1 = { value , 'unit' };  % label:location
end

where label is a string corresponding to the input port name in the block diagram, location is one
of the following strings: left, right, top, bottom.
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Examples
The following example declares an input port s, with a default value of 1 Pa, specifying the control
port of a hydraulic pressure source. In the block diagram, this port will be named Pressure and will
be located on the top side of the block icon.

inputs
    s = { 1, 'Pa' };   % Pressure:top
end

The next example declares an input port I as a row vector of electrical currents. The three signals
have a default value of 1 A. The signal initial values may be different, but the unit has to be the same.

 inputs
   I = { [1 1 1], 'A'}; 
 end

You can also reference component parameters in input declarations. For example, you can control the
signal size by using a block parameter:

component MyTransformer
     parameters 
         N = 3; % Number of windings
     end
     inputs
         I = {zeros(N, 1), 'A'}; 
     end
     ....
 end

The following example declares an input port I as an untyped identifier. The unit and size of the input
physical signal at port I are propagated from the connected output port.

 inputs
   I;
 end
 

See Also
outputs | nodes

Topics
“Declare Component Inputs and Outputs” on page 2-18
“Physical Signal Unit Propagation”

Introduced in R2008b
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integ
Perform time integration of expression

Syntax
integ(expr,t_L)

Description
The integ operator lets you perform time integration of an expression in the equations section of a
Simscape file without declaring and initializing extra variables.

The full syntax is:

integ(expr,t_L)

where:

• expr is a Simscape language expression.
• t_L is the lower integration limit, specified as a delay time relative to the current time. This

operand is optional.

The upper integration limit is the current simulation time. If you omit the lower limit, the integration
starts from the simulation start time.

expr can be of any type. It will automatically be converted to a double.

The following restrictions apply:

• expr cannot contain delay or der operators. Any time-dependency in expr is attributed to the
integration variable.

• expr is assumed to have zero history for times prior to start of simulation.
• t_L must be a scalar nonnegative constant or parametric expression with the unit of time.

The return unit of integ is the unit of its operand multiplied by a unit of time.

Examples
Calculate the total energy through an electrical branch:

e == integ(v*i);

Calculate a moving average of the input signal:
component MovingAvg
  inputs
    u = 0;
  end
  outputs
    avg = 0;
  end
  parameters
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    T = { 1, 's' };   % Time interval
  end
  equations
    avg == integ(u,T)/T;
  end
end

The block generated from this component outputs the moving average of the input signal over a time
interval specified by the Time interval parameter.

See Also
equations

Introduced in R2016a
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intermediates
Define intermediate terms for use in equations

Syntax
intermediates int_term1 = expr1; end     

Description
intermediates begins an intermediates declaration block, which is terminated by an end keyword.
In a component file, this block contains declarations of named intermediate terms for use in
equations. You can reuse these intermediate terms in any equations section of the same component or
of an enclosing composite component.

You can also include an intermediates section in a domain file and reuse these intermediate terms
in any component that has nodes of that domain type.

When an intermediate term is used in an equation, it is ultimately substituted with the expression
that it refers to. Think of an intermediate term as of defining an alias for an expression.

intermediates
    int_term1 = expr1;
end

Declaring intermediate terms helps with code reuse and readability. For example, if you declare
hydraulic diameter and critical Reynolds number as intermediate terms in a hydraulic component,
you can then use these terms throughout the component equations.

You can also specify a descriptive name for an intermediate term, as a comment, similar to the way
you do it for parameters and variables:

intermediates
    int_term1 = expr1; % Descriptive name
end

Then, if you include the intermediate term in logged simulation data, this descriptive name appears in
the Simscape Results Explorer.

Examples
This example declares the intermediate term D_h (hydraulic diameter) as a function of the orifice
area:

intermediates
    D_h  = sqrt( 4.0 * A / pi ); % Hydraulic diameter
end

This example declares the same intermediate term D_h, but prevents it from appearing in simulation
data logs:
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intermediates(ExternalAccess = none)
    D_h  = sqrt( 4.0 * A / pi ); 
end

See Also
equations

Topics
“Using Intermediate Terms in Equations” on page 2-37

Introduced in R2018b

5 Language Reference

5-56



modecharts
Declare mode charts that include operating modes and transitions

Syntax
modecharts mc1 = modechart ... end end     

Description
modecharts begins a mode charts declaration block, which is terminated by an end keyword.
modecharts is a top-level section in a component file. It can contain one or more modechart
constructs. Each modechart construct declares one mode chart. A mode chart declaration must
describe a complete set of operating modes and transition rules between these modes.

For example, the following syntax declares two mode charts, mc1 and mc2.

modecharts (ExternalAccess = observe)
    mc1 = modechart
    ...
    end
    mc2 = modechart
    ...
    end
end

modechart is a named construct. It is terminated by an end keyword. A modechart construct
contains a complete textual representation of the mode chart: modes, transitions, and an optional
initial mode specification. If you omit the initial mode specification, then the first mode listed in the
modes section is active at the start of simulation.

modecharts (ExternalAccess = observe)
     mc1 = modechart
        modes
           ...        
      end
        transitions
           ...
        end
        initial
           ...
        end
     end
end

A mode chart is defined within the scope of its parent component. In other words, its equations and
predicates reference the component members, such as parameters and variables.

Member Accessibility Attribute Values

A modecharts declaration block has the following attributes:

• Access — Defines the read and write access.
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• ExternalAccess — Sets the visibility in the user interface.

A mode chart cannot be modifiable in the user interface. Therefore, the following rules apply:

• A modecharts declaration block can have its ExternalAccess attribute set to observe or
none, but not to modify.

• The default Access attribute value is public, and the corresponding default value for the
ExternalAccess attribute is modify. Therefore, if you do not set the Access attribute for a
modecharts declaration block, you must explicitly set its ExternalAccess attribute to observe
or none. For example:

modecharts (ExternalAccess = observe)
   ...
end

• If you set the Access attribute to private or protected, then the default value for the
ExternalAccess attribute is observe. Therefore, you do not have to set the ExternalAccess
attribute value explicitly, for example:

modecharts (Access = protected)
   ...
end

Set the ExternalAccess attribute to none if you do not want the mode chart to be visible
anywhere outside the language. For example:

modecharts (Access = private,ExternalAccess = none)
   ...
end

See Also
modes | transitions | initial | entry

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-5

Introduced in R2017a
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modes
Declare operating modes in mode chart

Syntax
modes mode m1 ... end mode m2 ... end end     

Description
modes begins a modes declaration block in a mode chart. The modes block, terminated by an end
keyword, can contain one or more mode constructs. Each mode construct declares one mode.

For example, the following syntax declares two modes, m1 and m2.

modes
    mode m1
    ...
    end
    mode m2
    ...
    end
end

mode is a named construct. It is terminated by an end keyword. Each mode declaration contains a
complete set of equations that describe this operating mode.

modes
    mode m1
       equations
       ...
       end
    end
    mode m2
       equations
       ...
       end
    end
end

For every mode, the total number of equation expressions, their dimensionality, and their order must
be the same. This restriction is the same as for the equations in different branches of the if-
elseif-else statement.

This restriction does not apply to the assert expressions, because they are not included in the
expression count.

A mode declaration can contain an entry section, which lets you specify the actions to be performed
upon entering the mode. These actions are event variable updates based on the value of a continuous
variable immediately before entering the mode.

modes
    mode m1
       equations
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       ...
       end
    end
    mode m2
       entry
       ...
       end
       equations
       ...
       end
    end
end

The entry section is separate from the equations section, and the event variable updates in the
entry section are not counted in the number of equation expressions for the mode.

To implement a state reset, mode charts can contain instantaneous modes and compound transitions.
An instantaneous mode is a mode that is active only for one event iteration. You declare
instantaneous modes the same way as regular modes, using the same syntax. The same mode can be
used as an instantaneous mode in one case and a regular mode in another, depending on the
transitions declared in a mode chart. To specify that a mode is instantaneous, list it as the middle
mode in a compound transition.

See Also
modecharts | entry | transitions | initial

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-5

Introduced in R2017a
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nodes
Define component nodes, that is, conserving ports of block

Syntax
nodes a = package_name.domain_name; end     

Description
nodes begins a nodes declaration block, which is terminated by an end keyword. This block contains
declarations for all the component nodes, which correspond to the conserving ports of a Simscape
block generated from the component file. Each node is defined by assignment to an existing domain.
See “Declare Component Nodes” on page 2-16 for more information.

The following syntax defines a node, a, by associating it with a domain, domain_name.
package_name is the full path to the domain, starting with the top package directory. For more
information on packaging your Simscape files, see “Building Custom Block Libraries” on page 4-25.

nodes
    a = package_name.domain_name;
end

You can specify the port label and location, the way you want it to appear in the block diagram, as a
comment:

nodes
    a = package_name.domain_name;  % label:location
end

where label is a string corresponding to the port name in the block diagram, location is one of
the following strings: left, right, top, bottom.

Examples
The following example uses the syntax for the Simscape Foundation mechanical rotational domain:

nodes
    r = foundation.mechanical.rotational.rotational;
end

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the domain file
rotational.ssc.

If you want to use your own customized rotational domain called rotational.ssc and located at
the top level of your custom package directory +MechanicalElements, the syntax would be:

nodes
    r = MechanicalElements.rotational;
end
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The following example declares an electrical node using the syntax for the Simscape Foundation
electrical domain. In the block diagram, this port will be labelled + and will be located on the top side
of the block icon.

nodes
    p = foundation.electrical.electrical; % +:top
end

See Also
inputs | outputs

Topics
“Declare Component Nodes” on page 2-16
“Define Relationship Between Component Variables and Nodes” on page 2-23

Introduced in R2008b
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outputs
Define component outputs, that is, Physical Signal output ports of block

Syntax
outputs out1 = { value , 'unit' };  end 

outputs out1; end 

Description
outputs begins a component outputs definition block, which is terminated by an end keyword. This
block contains declarations for component outputs. Outputs will appear as Physical Signal output
ports in the block diagram when the component file is brought into a Simscape model.

Each output can be defined as:

• A value with unit on page 2-5, where value can be a scalar, vector, or matrix. For a vector or a
matrix, all signals have the same unit.

• An untyped identifier, to facilitate unit propagation.

Specifying an optional comment lets you control the port label and location in the block icon.

The following syntax defines a component output, out1, as a value with unit. value is the initial
value. unit is a valid unit string, defined in the unit registry.

outputs
    out1 = { value , 'unit' };
end

If you declare an output without a value and unit, as an untyped identifier, then the output signal type
(size and unit) is based on the input signal type and unit propagation rules. Use the following syntax
to declare a component output, out1, as an untyped identifier.

outputs
    out1;
end

You can specify the output port label and location, the way you want it to appear in the block
diagram, as a comment:

outputs
    out1 = { value , 'unit' };  % label:location
end

where label is a string corresponding to the input port name in the block diagram, location is one
of the following strings: left, right, top, bottom.
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Examples
The following example declares an output port p, with a default value of 1 Pa, specifying the output
port of a hydraulic pressure sensor. In the block diagram, this port will be named Pressure and will
be located on the bottom side of the block icon.

outputs
    p = { 1 'Pa' };   % Pressure:bottom
end

The next example declares an output port v as a 3-by-3 matrix of linear velocities.

 outputs
   v = {zeros(3), 'm/s'}; 
 end

You can also reference component parameters in output declarations. For example, you can control
the signal size by using a block parameter:

component MyComp
     parameters 
         N = 3; % Matrix size
     end
     outputs
         v = {zeros(N), 'm/s'}; 
     end
     ....
 end

The following example declares an input port I and output port O as untyped identifiers. In the block
diagram, the output port will be located on the right side of the block icon. The block propagates the
unit and size of the physical signal from port I to port O. For more information, see “Physical Signal
Unit Propagation”.

 inputs
   I;
 end
 outputs
   O; % :right
 end

See Also
inputs | nodes

Topics
“Declare Component Inputs and Outputs” on page 2-18

Introduced in R2008b
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parameters
Specify component parameters

Syntax
parameters comp_par1 = { value , 'unit' };  end

Description
Component parameters let you specify adjustable parameters for the Simscape block generated from
the component file. Parameters will appear in the block dialog box and can be modified when building
and simulating a model.

parameters begins a component parameters definition block, which is terminated by an end
keyword. This block contains declarations for component parameters. Parameters will appear in the
block dialog box when the component file is brought into a Simscape model. Each parameter is
defined as a value with unit on page 2-5. Specifying an optional comment lets you control the
parameter name in the block dialog box.

The following syntax defines a component parameter, comp_par1, as a value with unit. value is the
initial value. unit is a valid unit string, defined in the unit registry.

parameters
    comp_par1 = { value , 'unit' };
end

To declare a unitless parameter, you can either use the same syntax:

 par1 = { value , '1' };

or omit the unit and use this syntax:

 par1 = value;

Internally, however, this parameter will be treated as a two-member value-unit array { value ,
'1' }.

You can specify the parameter name, the way you want it to appear in the block dialog box, as a
comment:

parameters
    comp_par1 = { value , 'unit' }; % Parameter name
end

Examples
The following example declares parameter k, with a default value of 10 N*m/rad, specifying the
spring rate of a rotational spring. In the block dialog box, this parameter will be named Spring rate.

parameters
    k = { 10 'N*m/rad' };   % Spring rate
end
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See Also
variables

See Also
value

Topics
“Declare Component Parameters” on page 2-13

Introduced in R2008b
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setup
(Not recommended) Prepare component for simulation

Note setup is not recommended. For more information, see “Compatibility Considerations”.

Syntax
function setup
[...]
end
function setup %#simple
[...]
end

Description
function setup
[...]
end

The setup section of a Simscape file consists of the function named setup. The setup function is
executed once for each component instance during model compilation. It takes no arguments and
returns no arguments.

Note Setup is not a constructor; it prepares the component for simulation.

The body of the setup function can contain assignment statements, if and error statements, and
across and through functions. The setup function is executed once for each component instance
during model compilation. It takes no arguments and returns no arguments.

Use the setup function for the following purposes:

• Validating parameters
• Computing derived parameters
• Setting initial conditions

The following rules apply:

• The setup function is executed as regular MATLAB code.
• All parameters and variables declared in the component are available by their name, for example:

component MyComponent
   parameters
      p = {1, 'm' };
   end
   [...]
   function setup
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      disp( p ); % during compilation, prints value of p 
                 % for each instance of MyComponent in the model
   [...]
end   

• You can use variable names only on the left-hand side of the assignments in the setup section.
Parameter names can be used on either side.

• All parameters and variables that are externally writable are writable within setup.
• In case of conflict, assignments in the setup section override those made in the declaration

section. To ensure proper block operation, if you assign a value to a member in the setup section,
declare this member with an attribute that prevents it from appearing in the block dialog box,
such as (ExternalAccess=observe). Otherwise, the assignment made in the setup section
will override the values specified in the dialog box by the block user. See “Attribute Lists” on page
2-105 for more information.

• Local MATLAB variables may be introduced in the setup function. They are scoped only to the
setup function.

The following restrictions apply:

• Command syntax is not supported in the setup function. You must use the function syntax. For
more information, see “Choose Command Syntax or Function Syntax”.

• Persistent and global variables are not supported. For more information, see “Persistent Variables”
and “Global Variables”.

• MATLAB system commands using the ! operator are not supported.
• try-end and try-catch-end constructs are not supported.
• Nested functions are not supported.
• Passing declaration members to external MATLAB functions, for example,

my_function(param1), is not supported. You can, however, pass member values to external
functions, for example, my_function(param1.value('unit')).

Simple Setup

In general, you cannot designate a block parameter as run-time if the underlying component uses it in
the setup function. However, if the setup is restricted to simple operations like error-checking, you
can declare the setup function as simple:

function setup %#simple
[...]
end

In this case, many of the parameters used in the setup function can be designated as run-time
parameters.

When you declare setup function as simple, the following rules apply:

• All expressions used in a simple setup function must restrict themselves to those supported
elsewhere in Simscape language. For a complete list of supported functions, see equations.

• A value, parameter or variable, may be assigned to only once on any given path through the
setup function.

• All reads from a parameter must appear after it is assigned in a setup function.
• All assignments must end in a semicolon.
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• All members that are assigned to must be private parameters or variables of the current
component. Simple setup cannot assign to members of child components or members of a base
class.

• You can declare local MATLAB variables in a simple setup function, but these variables cannot be
structures.

• Arguments of error and warning functions must be literal strings.

In general, making a setup function simple means that all parameters are run-time capable. The
exception are those parameters that drive conditional assignment:

 if p1 > 0
   p3 = f1(p2);
 else
   p3 = f2(p2);
 end  

In this case, p1 must be compile-time. However, only those parameters that affect conditional
assignment are compile-time. Those that affect error conditions are run-time capable.

Examples
The following setup function validates parameters using an if statement and the error function.
component MyComponent
   parameters
      LowerThreshold = {1, 'm' };
      UpperThreshold = {1, 'm' };
   end
   [...]
   function setup
      if LowerThreshold > UpperThreshold 
         error( 'LowerThreshold is greater than UpperThreshold' );
      end
   end
   [...]
end   

To avoid using setup, rewrite this example as follows:
component MyComponent
   parameters
      LowerThreshold = {1, 'm' };
      UpperThreshold = {1, 'm' };
   end
   [...]
   equations
      assert(LowerThreshold<UpperThreshold,'LowerThreshold is greater than UpperThreshold');
      [...]
   end
   [...]
end   

Compatibility Considerations
setup is not recommended
Not recommended starting in R2019a

Starting in R2019a, run-time capable domain parameters have been implemented. Unlike component
parameters, domain parameters propagate to other components connected to the circuit. Therefore,
when you set the parameter as Run-time in the source component, it is possible that another
component connected to the same circuit is using this parameter in the context which prevents it
from being run-time configurable. For example, if one of the components connected to the circuit
uses a domain parameter in its setup function, you get an error when trying to simulate the model.
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There are no plans to remove setup at this time. However, to avoid errors with run-time domain
parameters, it is recommended that you avoid using the setup function in your custom components.
Other constructs available in Simscape language let you achieve the same results without
compromising run-time capabilities.

Task Recommended Technique
Validate parameters Use an assert construct. For more information, see

“Programming Run-Time Errors and Warnings” on page 2-
50.

Compute derived parameters Use declaration functions. For more information, see
“Declaration Functions” on page 3-21.

Set initial conditions Assign variable priority and target value. For more
information, see “Variable Priority for Model Initialization”
on page 2-9.

Designate source for domain
parameters

Use direct assignment to a domain parameter in the
component node declaration. For more information, see
“Source Components” on page 2-100.

See Also
assert

Topics
“Programming Run-Time Errors and Warnings” on page 2-50
“Declaration Functions” on page 3-21
“Variable Priority for Model Initialization” on page 2-9
“Source Components” on page 2-100

Introduced in R2008b
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tablelookup
Return value based on interpolating set of data points

Syntax
tablelookup(x1d, x2d, x3d, x4d, fd, x1, x2, x3, x4, interpolation = linear|
smooth, extrapolation = linear|nearest|error)

Description
Use the tablelookup function in the equations section to compute an output value by
interpolating the query input value against a set of data points. This functionality is similar to that of
the Simulink and Simscape Lookup Table blocks. It allows you to incorporate table-driven modeling
directly in your custom block, without the need of connecting an external Lookup Table block to your
model.

The tablelookup function supports one-dimensional, two-dimensional, three-dimensional, and four-
dimensional lookup tables. The full syntax is:

tablelookup(x1d, x2d, x3d, x4d, fd, x1, x2, x3, x4, interpolation = linear|
smooth, extrapolation = linear|nearest|error)

x1d Data set of input values along the first direction, specified as a
one-dimensional array. The values must be strictly monotonic,
either increasing or decreasing. This is a required argument.

x2d Data set of input values along the second direction, specified as
a one-dimensional array. The values must be strictly monotonic,
either increasing or decreasing. This argument is used only for
the two-dimensional, three-dimensional, and four-dimensional
table lookup.

x3d Data set of input values along the third direction, specified as a
one-dimensional array. The values must be strictly monotonic,
either increasing or decreasing. This argument is used only for
the three-dimensional and four-dimensional table lookup.

x4d Data set of input values along the fourth direction, specified as
a one-dimensional array. The values must be strictly monotonic,
either increasing or decreasing. This argument is used only for
the four-dimensional table lookup.
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fd Data set of output values for the table lookup. This is a required
argument.

For one-dimensional table lookup, fd must be a one-dimensional
array of the same size as x1d.

For two-dimensional table lookup, fd must be a two-
dimensional array, with the size matching the dimensions
defined by the input data sets. For example, if x1d is a 1-by-m
array, and x2d is a 1-by-n array, then fd must be an m-by-n
matrix.

For three-dimensional table lookup, fd must be a three-
dimensional array, with the size matching the dimensions
defined by the input data sets. For example, if x1d is a 1-by-m
array, x2d is a 1-by-n array, and x3d is a 1-by-p array, then fd
must be an m-by-n-by-p array.

For four-dimensional table lookup, fd must be a four-
dimensional array, with the size matching the dimensions
defined by the input data sets. For example, if x1d is a 1-by-m
array, x2d is a 1-by-n array, x3d is a 1-by-p array, and x4d is a
1-by-q array, then fd must be an m-by-n-by-p-by-q array.

x1 The query input value along the first direction, specified as a
scalar or as a one-dimensional array. Its units must be
commensurate with the units of x1d. This is a required
argument.

x2 The query input value along the second direction, specified as a
scalar or as a one-dimensional array of the same size as x1. Its
units must be commensurate with the units of x2d. This
argument is used only for the two-dimensional, three-
dimensional, and four-dimensional table lookup.

x3 The query input value along the third direction, specified as a
scalar or as a one-dimensional array of the same size as x1. Its
units must be commensurate with the units of x3d. This
argument is used only for the three-dimensional and four-
dimensional table lookup.

x4 The query input value along the fourth direction, specified as a
scalar or as a one-dimensional array of the same size as x1. Its
units must be commensurate with the units of x4d. This
argument is used only for the four-dimensional table lookup.

interpolation = linear|
smooth

Optional argument that specifies the approximation method for
calculating the output value when the input value is inside the
range specified in the lookup table. The default is
interpolation = linear.

extrapolation = linear|
nearest|error

Optional argument that specifies the approximation method for
calculating the output value when the input value is outside the
range specified in the lookup table. The default is
extrapolation = linear.
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The interpolation argument values are:

• linear — For one-dimensional table lookup, uses a linear function. For two-dimensional and
three-dimensional table lookup, uses an extension of linear algorithm for multidimensional
interpolation, by performing linear interpolation in first direction, then in second direction, and
then in third direction. Use this method to get the best performance.

• smooth — Uses a modified Akima algorithm. For more information, see makima. Use this method
to produce a continuous curve or surface with continuous first-order derivatives.

The extrapolation argument values are:

• linear— Extends from the edge of the interpolation region linearly. The slope of the linear
extrapolation is equal to the slope of the interpolated curve or surface at the edge of the
interpolation region. Use this method to produce a curve or surface with continuous value and
continuous first-order derivatives at the boundary between the interpolation region and the
extrapolation region.

• nearest — Extends from the edge of the interpolation region as a constant. The value of the
nearest extrapolation is equal to the value of the interpolated curve or surface at the edge of the
interpolation region. Use this method to produce a curve or surface with continuous value at the
boundary between the interpolation region and the extrapolation region that does not go above
the highest point in the data or below the lowest point in the data.

• error — Generates an error when the input value is outside the range specified in the lookup
table.

The function returns an output value, in the units specified for fd, by looking up or estimating table
values based on the input values:

When inputs x1, x2, x3, and x4... The tablelookup function...
Match the values in the input data sets, x1d, x2d,
x3d, and x4d

Outputs the corresponding table value, fd

Do not match the values in the input data sets,
but are within range

Interpolates appropriate table values, using the
method specified as the interpolation
argument value

Do not match the values in the input data sets,
and are out of range

Extrapolates the output value, using the method
specified as the extrapolation argument value

If the query input values x1, x2, x3, and x4 are:

• Scalar, then the function returns a scalar.
• One-dimensional arrays, then the function returns a one-dimensional array of the same size.

Error Checking

The following rules apply to data sets x1d, x2d, x3d, x4d, and fd:

• For one-dimensional table lookup, x1d and fd must be one-dimensional arrays of the same size.
• For two-dimensional table lookup, x1d and x2d must be one-dimensional arrays, and fd must be a

matrix, with the size matching the dimensions defined by the input data sets. For example, if x1d
is a 1-by-m array, and x2d is a 1-by-n array, then fd must be an m-by-n matrix.

• For three-dimensional table lookup, x1d, x2d, and x3d must be one-dimensional arrays, and fd
must be a three-dimensional array, with the size matching the dimensions defined by the input
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data sets. For example, if x1d is a 1-by-m array, x2d is a 1-by-n array, and x3d is a 1-by-p array,
then fd must be an m-by-n-by-p array.

• For four-dimensional table lookup, x1d, x2d, x3d, and x4d must be one-dimensional arrays, and
fd must be a four-dimensional array, with the size matching the dimensions defined by the input
data sets. For example, if x1d is a 1-by-m array, x2d is a 1-by-n array, x3d is a 1-by-p array, and
x4d is a 1-by-q array, then fd must be an m-by-n-by-p-by-q array.

• The x1d, x2d, x3d, and x4d values must be strictly monotonic, either increasing or decreasing.
• For smooth interpolation, each data set of input values must contain at least three values. For

linear interpolation, two values are sufficient.

Using Enumerations for Interpolation and Extrapolation Options

The Foundation library includes built-in enumerations, interpolation.m and extrapolation.m:

classdef interpolation < int32
   enumeration
       linear (1)
       smooth (2)
   end
   methods(Static)
    function map = displayText()
      map = containers.Map;
      map('linear') = 'Linear';
      map('smooth') = 'Smooth';
    end
  end
end

classdef extrapolation < int32
   enumeration
       linear (1)
       nearest (2)
       error (3)
   end
   methods(Static)
    function map = displayText()
      map = containers.Map;
      map('linear') = 'Linear';
      map('nearest') = 'Nearest';
      map('error') = 'Error';
    end
  end
end

These enumerations are located in the directory matlabroot\toolbox\physmod\simscape
\library\m\+simscape\+enum.

You can use these enumerations to declare component parameters, and then use these parameters as
tablelookup function arguments. For more information, see the “User-Specified Interpolation and
Extrapolation Methods” on page 5-76 example and “Using Enumeration in Function Arguments” on
page 3-18.
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Examples
1D Lookup Table Implementation

This example implements a one-dimensional lookup table with linear interpolation and extrapolation.

component tlu_1d_linear
 inputs
   u = 0;
 end
 outputs
   y = 0;
 end
 parameters (Size=variable)
   xd = [1 2 3 4];
   yd = [1 2 3 4];
 end
 equations
   y == tablelookup(xd, yd, u);
 end
end

xd and yd are declared as variable-size parameters. This enables the block users to provide their own
data sets when the component is converted to a custom block. For more information, see “Using
Lookup Tables in Equations” on page 2-48.

The xd values must be strictly monotonic, either increasing or decreasing. yd must have the same
size as xd.

2D Lookup Table Implementation

This example implements a two-dimensional lookup table with specific interpolation and extrapolation
methods.

component tlu_2d
 inputs
   u1 = 0;
   u2 = 0;
 end
 outputs
   f = 0;
 end
 parameters (Size=variable)
   x1d = [1 2 3 4];
   x2d = [1 2 3];
   fd = [1 2 3; 3 4 5; 5 6 7; 7 8 9];
 end
 equations
   f == tablelookup(x1d, x2d, fd, u1, u2, interpolation=smooth, extrapolation=nearest);
 end
end

x1d, x2d, and fd are declared as variable-size parameters. The x1d and x2d vector values must be
strictly monotonic, either increasing or decreasing. For smooth interpolation, each vector must have
at least three values. The size of the fd matrix must match the dimensions of the x1d and x2d
vectors.
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The interpolation uses the modified Akima algorithm, makima. The extrapolation uses the nearest
value of fd for out-of-range u1 and u2 values.

User-Specified Interpolation and Extrapolation Methods

This example is similar to the previous one on page 5-75, but it gives the block user control over the
interpolation and extrapolation methods.

import simscape.enum.*
component tlu_2d_enum
 inputs
   u1 = 0;
   u2 = 0;
 end
 outputs
   f = 0;
 end
 parameters (Size=variable)
   x1d = [1 2 3 4];
   x2d = [1 2 3];
   fd = [1 2 3; 3 4 5; 5 6 7; 7 8 9];
 end
 parameters
   interp = interpolation.linear; % Interpolation method
   extrap = extrapolation.linear; % Extrapolation method
 end
 equations
   f == tablelookup(x1d, x2d, fd, u1, u2, interpolation=interp, extrapolation=extrap);
 end
end

The component imports the built-in enumerations, and then uses them to declare two additional
parameters: interp (Interpolation method) and extrap (Extrapolation method). The
tablelookup function uses these parameters as arguments, to specify the interpolation and
extrapolation methods. For more information, see “Using Enumeration in Function Arguments” on
page 3-18.

The block generated from this component will have the Interpolation method and Extrapolation
method parameters, both with the default value of Linear. The block user can select any other
interpolation and extrapolation options.

Using Lookup Table with Units

This example implements a one-dimensional lookup table with units, to map temperature to pressure,
with linear interpolation and extrapolation.

component TtoP
 inputs
   u = {0, 'K'}; % temperature
 end
 outputs
   y = {0, 'Pa'}; % pressure
 end
 parameters (Size=variable)
   xd = {[100 200 300 400] 'K'};
   yd = {[1e5 2e5 3e5 4e5] 'Pa'};
 end
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 equations
   y == tablelookup(xd, yd, u);
 end
end

xd and yd are declared as variable-size parameters with units. This enables the block users to
provide their own data sets when the component is converted to a custom block, and also to select
commensurate units from the drop-downs in the custom block dialog box. For more information, see
“Using Lookup Tables in Equations” on page 2-48.

The xd values must be strictly monotonic, either increasing or decreasing. yd must have the same
size as xd.

See Also
equations | makima | PS Lookup Table (1D) | PS Lookup Table (2D) | PS Lookup Table (3D) | PS
Lookup Table (4D)

Topics
“Using Lookup Tables in Equations” on page 2-48

Introduced in R2012a
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through
Establish relationship between component variables and nodes

Syntax
through( variableI, node1.variableA, node2.variableB )

Description

Note through will be removed in a future release. Use branches instead. For more information,
see “Define Relationship Between Component Variables and Nodes” on page 2-23.

through( variableI, node1.variableA, node2.variableB ) establishes the following
relationship between the three arguments: for each variableI, node1.variableA is assigned the
value sum( variableI ) and node2.variableB is assigned the value sum( -variableI ). All
arguments are variables. The first one is not associated with a node. The second and third must be
associated with a node.

The following rules apply:

• All arguments must have consistent units.
• The second and third arguments do not need to be associated with the same domain. For example,

one may be associated with a one-phase electrical domain, and the other with a 3-phase electrical.
• Either the second or the third argument may be replaced with [] to indicate the reference node.

Examples
For example, if a component declaration section contains two electrical nodes, p and n, and a variable
i = { 0, 'A' }; specifying current, you can establish the following relationship in the setup
section:

through( i, p.i, n.i ); 

This defines current i as a Through variable from node p to node n.

See Also
across

branches

Introduced in R2008b
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time
Access global simulation time

Syntax
time

Description
You can access global simulation time from the equation section of a Simscape file using the time
function.

time returns the simulation time in seconds.

Examples
The following component outputs y = sin (ωt):

component MyComp
  parameters
    w = { 1, '1/s' } % omega
  end
  outputs
    y = 0;
  end
  equations
    y == sin( w * time );
  end
end

See Also
equations

Topics
“Use Simulation Time in Equations” on page 2-32

Introduced in R2008b
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transitions
Define transitions between modes in mode chart

Syntax
transitions from_mode -> to_mode : predicate_condition end     

Description
transitions begins a transitions declaration block in a mode chart. The transitions block,
terminated by an end keyword, can contain one or more transition constructs.

Generally, each transition construct has the following syntax:

from_mode -> to_mode : predicate_condition

where:

• from_mode is the mode active before the transition.
• to_mode is the mode active after the transition.
• predicate_condition is the expression that needs to be true for the transition to happen.

For example, if a mode chart declares two modes, m1 and m2, the following syntax specifies that the
system transitions from mode m1 to mode m2 when the p1 predicate is true:

transitions
    m1 -> m2 : p1
end

To implement a state reset, mode charts can contain instantaneous modes and compound transitions.
Compound transitions have the following syntax:

from_mode -> instantaneous_mode -> to_mode : predicate_condition

where:

• from_mode is the mode active before the transition.
• instantaneous_mode is the mode active for one event iteration during the transition. Only one

instantaneous mode is allowed per transition, therefore, a compound transition cannot contain
more than three modes.

• to_mode is the mode active after the transition. For a compound transition, to_mode can be the
same as from_mode.

• predicate_condition is the expression that needs to be true for the transition to happen.

For example, in this compound transition, when predicate t becomes true, the system transitions
from mode A to mode B, performs one event iteration, and then immediately transitions to mode C.

A -> B -> C : t
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Transition Precedence and Execution Rules

If multiple predicates become true simultaneously, the transition priority is defined by the order they
are listed. For example, a mode chart declares three modes, m1, m2, and m3, and defines the following
transitions:

transitions
    m1 -> m2 : p1
    m1 -> m3 : p2
end

If predicates p1 and p2 become true simultaneously, the system transitions from mode m1 to mode m2
(the first transition listed).

At initialization time, the solver sets the initial mode first, and then checks the transitions. If a
transition predicate is true at initialization time, the system might start in a different mode than that
listed first (or specified by the initial construct). For example, consider a mode chart that declares
two modes, m1 and m2, and defines the following transition:

transitions
    m1 -> m2 : p1
end

If predicate p1 is true at initialization time, the system immediately transitions from mode m1 (the
first mode listed) to mode m2, and simulation starts in mode m2.

Similarly, if a transition predicate is still true after completing the transition, the system can enter an
infinite loop and eventually generate an error. This modeling error is more prevalent with compound
transitions, where, after completing the transition, the system often ends up in the same mode where
it was before entering the transition. To avoid this situation, try to model compound transitions in
such a way that the instantaneous mode invalidates the predicate. For more information, see “State
Reset Example” on page 3-11.

See Also
modecharts | modes | initial

Topics
“Mode Chart Modeling” on page 3-2
“Switch with Hysteresis” on page 3-5
“State Reset Modeling” on page 3-11

Introduced in R2017a
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value
Convert variable or parameter to unitless value with specified unit conversion

Syntax
value(a,'unit')
value(a,'unit','type')

Description
value(a,'unit') returns a unitless numerical value, converting a into units unit. a is a variable
or parameter, specified as a value with unit on page 2-5, and unit is a unit defined in the unit
registry. unit must be commensurate with the units of a.

value(a,'unit','type') performs either linear or affine conversion of temperature units and
returns a unitless numerical value, converting a into units unit. type specifies the conversion type
and can be one of two strings: linear or affine. If the type is not specified when converting
temperature units, it is assumed to be affine.

Use this function in the equation section of a Simscape file to convert a variable or parameter into a
scalar value.

Examples
If a = { 10, 'cm' }, then value(a, 'm') returns 0.1.

If a = { 10, 'C' }, then value(a, 'K', 'linear') returns 10.

If a = { 10, 'C' }, then value(a, 'K', 'affine') returns 283.15. value(a, 'K') also
returns 283.15.

If a = { 10, 'cm' }, then value(a, 's') issues an error because the units are not
commensurate.

See Also
parameters | variables

Topics
“Declaring a Member as a Value with Unit” on page 2-5

Introduced in R2008b
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variables
Define domain or component variables

Syntax
variables var1 = {value ,'unit'}; end

Description
variables begins a variables declaration block, which is terminated by an end keyword:

• In a component file, this block contains declarations for all the variables associated with the
component.

• In a domain file, this block contains declarations for all the Across variables associated with the
domain. Additionally, domain files must have a separate variables declaration block, with the
Balancing attribute set to true, which contains declarations for all the Through variables
associated with the domain.

Component Variables

In a component file, the following syntax defines an Across, Through, or internal variable,
comp_var1, as a value with unit on page 2-5. value is the initial value. unit is a valid unit string,
defined in the unit registry.

variables
    comp_var1 = {value,'unit'};
end

For component variables, you can additionally specify the initialization priority, the acceptable
initialization range, and the nominal value and unit by declaring the variable as a field array.

variables
    comp_var2 = {value = {value,'unit'},
                 priority = priority.value,
                 imin={value,'unit'},imax={value,'unit'},
                 nominal = {value,'unit'}};
end

The first field in the array is value (value with unit on page 2-5). The other fields are optional and
can come in any order.

The priority field can be one of three values listed in the following table:

Priority field in Simscape language Resulting default priority in the block dialog
box

priority = priority.high High
priority = priority.low Low
priority = priority.none (this is the
default)

None
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Note It is recommended that you use the priority attribute sparingly. The default priority value,
priority.none (which is equivalent to leaving out the priority attribute entirely), is suitable in
most cases. The block user can modify the variable priority value, as needed, in the Variables tab of
the block dialog box prior to simulation.

The imin and imax fields let you specify the minimum and maximum acceptable values for variable
initialization, for example:

variables
  x = {value={0,'deg'},imin={0,'deg'},imax={360,'deg'}};
end

When multiple initialization solutions exist, this syntax lets you guide the solver towards the
preferred solution. For more information, see “Block-Level Variable Initialization”. If the specified
range cannot be satisfied during initialization, the solver issues an error. The solver tries to satisfy
the initialization range for a variable regardless of whether its initialization priority is high, low, or
none.

The default initialization range is (-inf,inf). Therefore, you do not have to specify both values to
define the range, it is sufficient to specify only imin or imax. For example, use this syntax to limit the
temperature to positive values:

variables
  T = {value={293.15,'K'},imin={0,'K'}};
end

When you specify imin or imax, these values define an open range.

Note The block user does not have control over the variable initialization range. Only the block
author can specify the acceptable minimum and maximum values for variable initialization in the
component file, both for continuous and for event variables.

The nominal field must be a value with unit on page 2-5, where value is the nominal value, that is,
the expected magnitude of the variable. unit is a valid unit string, defined in the unit registry.

Note It is recommended that you use the nominal attribute sparingly. The default nominal values,
which come from the model value-unit table, are suitable in most cases. The block user can also
modify the nominal values and units for individual blocks by using either the Property Inspector or
set_param and get_param functions, if needed. For more information, see “Modify Nominal Values
for a Block Variable”.

You can also specify the variable name, the way you want it to appear in the Variables tab of the
block dialog box, as a comment:

variables
    comp_var1 = {value,'unit'}; % Variable name
end
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Domain Variables

In a domain file, the following syntax defines an Across variable, domain_across_var1, as a value
with unit on page 2-5. value is the initial value. unit is a valid unit string, defined in the unit
registry.

variables
    domain_across_var1 = {value,'unit'};
end

You can specify initialization ranges for domain Across variables, for example, to exclude negative
values for pressure or temperature. The syntax is the same as for component variables:

variables
    domain_across_var1 = {value={value,'unit'},imin={value,'unit'},imax={value,'unit'}};
end

In a domain file, the following syntax defines a Through variable, domain_through_var1, as a value
with unit on page 2-5. value is the initial value. unit is a valid unit string, defined in the unit
registry.

variables(Balancing = true)
    domain_through_var1 = {value,'unit'};
end

Examples
This example initializes the variable w (angular velocity) as 0 rad/s:

variables
    w = {0,'rad/s'}; % Angular velocity
end

This example initializes the variable x (spring deformation) as 0 mm, with high priority:

variables
    x = {value = {0,'mm'},priority = priority.high}; % Spring deformation
end

This example initializes the domain Through variable t (torque) as 1 N*m:

variables(Balancing = true)
    t = {1,'N*m'}; 
end

See Also
value

Topics
“Declare Component Variables” on page 2-8
“Declare Through and Across Variables for a Domain” on page 2-6

Introduced in R2008b
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Simscape Foundation Domains

• “Foundation Domain Types and Directory Structure” on page 6-2
• “Electrical Domain” on page 6-4
• “Three-Phase Electrical Domain” on page 6-5
• “Gas Domain” on page 6-6
• “Hydraulic Domain” on page 6-10
• “Isothermal Liquid Domain” on page 6-11
• “Magnetic Domain” on page 6-13
• “Mechanical Rotational Domain” on page 6-14
• “Mechanical Translational Domain” on page 6-15
• “Moist Air Domain” on page 6-16
• “Moist Air Source Domain” on page 6-20
• “Thermal Domain” on page 6-22
• “Thermal Liquid Domain” on page 6-23
• “Two-Phase Fluid Domain” on page 6-26
• “Pneumatic Domain” on page 6-29
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Foundation Domain Types and Directory Structure
Simscape software comes with the following Foundation domains:

• “Electrical Domain” on page 6-4
• “Three-Phase Electrical Domain” on page 6-5
• “Gas Domain” on page 6-6
• “Hydraulic Domain” on page 6-10
• “Isothermal Liquid Domain” on page 6-11
• “Magnetic Domain” on page 6-13
• “Mechanical Rotational Domain” on page 6-14
• “Mechanical Translational Domain” on page 6-15
• “Moist Air Domain” on page 6-16
• “Moist Air Source Domain” on page 6-20
• “Thermal Domain” on page 6-22
• “Thermal Liquid Domain” on page 6-23
• “Two-Phase Fluid Domain” on page 6-26

Simscape Foundation libraries are organized in a package containing domain and component
Simscape files. The name of the top-level package directory is +foundation, and the package
consists of subpackages containing domain files, structured as follows:

- +foundation 
|-- +electrical 
| |-- electrical.ssc 
| |-- three_phase.ssc
| |-- ...
|-- +gas 
| |-- gas.ssc 
| |-- ...
|-- +hydraulic  
| |-- hydraulic.ssc 
| |-- ...
|-- +isothermal_liquid  
| |-- isothermal_liquid.ssc 
| |-- ...
|-- +magnetic  
| |-- magnetic.ssc 
| |-- ...
|-- +mechanical  
| |-- +rotational 
| | |-- rotational.ssc 
| | |-- ...
| |-- +translational 
| | |-- translational.ssc 
| | |-- ...
|-- +moist_air 
| |-- moist_air.ssc
| |-- moist_air_source.ssc 
| |-- ...
|-- +pneumatic  (kept for compatibility purposes)
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| |-- pneumatic.ssc 
| |-- ...
|-- +thermal  
| |-- thermal.ssc 
| |-- ...
|-- +thermal_liquid  
| |-- thermal_liquid.ssc 
| |-- ...
|-- +two_phase_fluid  
| |-- two_phase_fluid.ssc 
| |-- ...

To use a Foundation domain in a component declaration, refer to the domain name using the full path,
starting with the top package directory. The following example uses the syntax for the Simscape
Foundation mechanical rotational domain:

r = foundation.mechanical.rotational.rotational; 

The name of the top-level package directory is +foundation. It contains a subpackage
+mechanical, with a subpackage +rotational, which in turn contains the domain file
rotational.ssc.
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Electrical Domain
The electrical domain declaration is shown below.

domain electrical
% Electrical Domain

% Copyright 2005-2013 The MathWorks, Inc.

  parameters
    Temperature = { 300.15 , 'K'     }; % Circuit temperature
    GMIN        = { 1e-12  , '1/Ohm' }; % Minimum conductance, GMIN
  end

  variables
    v = { 0 , 'V' };
  end

  variables(Balancing = true)
    i = { 0 , 'A' };
  end

end

It contains the following variables and parameters:

• Across variable v (voltage), in volts
• Through variable i (current), in amperes
• Parameter Temperature, specifying the circuit temperature
• Parameter GMIN, specifying minimum conductance

To refer to this domain in your custom component declarations, use the following syntax:

foundation.electrical.electrical 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Three-Phase Electrical Domain
The three-phase electrical domain declaration is shown below.

domain three_phase
    % Three-Phase Electrical Domain

    % Copyright 2012-2013 The MathWorks, Inc.

    parameters
        Temperature = { 300.15 , 'K'     }; % Circuit temperature
        GMIN        = { 1e-12  , '1/Ohm' }; % Minimum conductance, GMIN
    end

    variables
        V = { [ 0 0 0 ], 'V' };
    end

    variables(Balancing = true)
        I = { [ 0 0 0 ], 'A' };
    end

end

It contains the following variables and parameters:

• Across variable V (voltage), declared as a three-element row vector, in volts
• Through variable I (current), declared as a three-element row vector, in amperes
• Parameter Temperature, specifying the circuit temperature
• Parameter GMIN, specifying minimum conductance

To refer to this domain in your custom component declarations, use the following syntax:

foundation.electrical.three_phase 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Gas Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+gas/gas.ssc'])

Abbreviated gas domain declaration is shown below, with intermediate lookup table values omitted
for readability.
domain gas
% Gas Domain

% Copyright 2016-2019 The MathWorks, Inc.

parameters
    gas_spec = foundation.enum.gas_spec.perfect_gas; % Gas specification
    %                                                  1 - perfect_gas
    %                                                  2 - semiperfect_gas
    %                                                  3 - real_gas

    % Perfect gas properties

    R      = {0.287,             'kJ/(kg*K)'}; % Specific gas constant
    Z      = {1,                 '1'        }; % Compressibility factor
    T_ref  = {293.15,            'K'        }; % Reference temperature for gas properties
    h_ref  = {420,               'kJ/kg'    }; % Specific enthalpy at reference temperature
    cp_ref = {1,                 'kJ/(kg*K)'}; % Specific heat at constant pressure
    cv_ref = {0.713,             'kJ/(kg*K)'}; % Specific heat at constant volume
    mu_ref = {18,                'uPa*s'    }; % Dynamic viscosity
    k_ref  = {26,                'mW/(m*K)' }; % Thermal conductivity
    Pr_ref = {0.692307692307692, '1'        }; % Prandtl number

    % Semiperfect gas properties

    T_TLU1 = {[150:10:200, 250:50:1000, 1500, 2000]', 'K'}; % Temperature vector

    log_T_TLU1 = {[
        5.01063529409626
        5.07517381523383
        ...
        7.60090245954208
        ], '1'}; % Log temperature vector

    h_TLU1 = {[
        275.264783730547
        285.377054177734
        ...
        2377.14064127409
        ], 'kJ/kg'}; % Specific enthalpy vector

    cp_TLU1 = {[
        1.01211492398124
        1.01042105529234
        ...
        1.24628356718428
        ], 'kJ/(kg*K)'}; % Specific heat at constant pressure vector

    cv_TLU1 = {[
        0.725174216111164
        0.723480347422265
        ...
        0.959342859314206
        ], 'kJ/(kg*K)'}; % Specific heat at constant volume vector

    mu_TLU1 = {[
        10.3766056544352
        10.9908682444892
        ...
        68.0682900809450
        ], 'uPa*s'}; % Dynamic viscosity vector

    k_TLU1 = {[
        14.1517155766309
        15.0474512994325
        ...
        114.486299090693
        ], 'mW/(m*K)'}; % Thermal conductivity vector
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    Pr_TLU1 = {[
        0.742123270231960
        0.738025627675206
        ...
        0.740982912785154
        ], '1'}; % Prandtl number vector

    a_TLU1 = {[
        245.095563145758
        253.217606015000
        ...
        863.440849227825
        ], 'm/s'}; % Speed of sound vector

    int_dh_T_TLU1 = {[
        0
        0.0652630980004620
        0.126478959779276
        ...
        2.79681971660776
        ], 'kJ/(kg*K)'}; % integral of dh/T vector

    % Real gas properties

    % Default gas property tables for dry air
    % Rows of the tables correspond to the temperature vector
    % Columns of the tables correspond to the pressure vector

    T_TLU2 = {[150:10:200, 250:50:1000, 1500, 2000]',                 'K'  }; % Temperature vector
    p_TLU2 = {[0.001,0.005,0.01:0.01:0.1,0.12,0.15,0.2,0.5,1,2,5,10]','MPa'}; % Pressure vector

    log_T_TLU2 = {[
        5.01063529409626
        5.07517381523383
        ...
        7.60090245954208
        ], '1'}; % Log temperature vector

    log_p_TLU2 = {[
        9.21034037197618
        9.90348755253613
        ...
        16.1180956509583
        ], '1'}; % Log pressure vector

    log_rho_TLU2 = {[
        -1.45933859209149 -0.765580954956293 ... 2.84006136461620
        ], '1'}; % Log density table

    s_TLU2 = {[
        3.85666832168988 3.65733557342939 ... 4.66584072487367
        ], 'kJ/(kg*K)'}; % Specific entropy table

    h_TLU2 = {[
        276.007989595737 275.926922934925 ... 2386.79535914098
        ], 'kJ/kg'}; % Specific enthalpy table

    cp_TLU2 = {[
        1.00320557010184 1.00416915257750 ... 1.24767439351222
        ], 'kJ/(kg*K)'}; % Specific heat at constant pressure table

    cv_TLU2 = {[
        0.715425577953031 0.715655648411093    ... 0.960303115685940
        ], 'kJ/(kg*K)'}; % Specific heat at constant volume table

    mu_TLU2 = {[
        10.3604759816291 10.3621937105615 ... 68.3249440282350
        ], 'uPa*s'}; % Dynamic viscosity table

    k_TLU2 = {[
        14.0896194596466 14.0962928994967 ... 114.905858092359
        ], 'mW/(m*K)'}; % Thermal conductivity table

    Pr_TLU2 = {[
        0.737684026417089 0.738165370950116 ... 0.741888050943969
        ], '1'}; % Prandtl number table

    a_TLU2 = {[
        245.567929192228 245.496359667264 ... 878.939999571000
        ], 'm/s'}; % Speed of sound table

 Gas Domain

6-7



    log_drho_dp_TLU2 = [
        -10.6690690699104 -10.6678475863467 ... -13.2956456388403
        ]; % Log derivative of density with respect to pressure table

    log_drho_dT_TLU2 = [
        -6.46809263806814 -5.77245144865022 ... -4.77782516923660
        ]; % Log derivative of density with respect to temperature table

    drhou_dp_TLU2 = [
        5.41617782089664 5.42024592837099 ... 3.03095417965253
        ]; % Derivative of internal energy per unit volume with respect to pressure table

    drhou_dT_TLU2 = {[
        -0.195280173069178 -0.391714814336739 ... 1.27305147462835
        ], 'kJ/(m^3*K)'}; % Derivative of internal energy per unit volume with respect to temperature table

    pT_region_flag   = foundation.enum.pT_region_G.from_props;
    % Valid pressure-temperature region parameterization
    %                                                            1 - from_props
    %                                                            2 - min_max
    %                                                            3 - validity
    pT_validity_TLU2 = ones(24, 20); % Pressure-temperature validity matrix

    T_min = {1,   'K'  }; % Minimum valid temperature
    T_max = {inf, 'K'  }; % Maximum valid temperature
    p_min = {1,   'MPa'}; % Minimum valid pressure
    p_max = {inf, 'MPa'}; % Maximum valid pressure

    p_atm = {0.101325, 'MPa'}; % Atmospheric pressure

    T_unit       = {1, 'K'          }; % Unit for log temperature
    p_unit       = {1, 'Pa'         }; % Unit for log pressure
    rho_unit     = {1, 'kg/m^3'     }; % Unit for log density
    drho_dp_unit = {1, 'kg/(m^3*Pa)'}; % Unit for log derivative of density with respect to pressure
    drho_dT_unit = {1, 'kg/(m^3*K)' }; % Unit for log derivative of density with respect to temperature

    log_ZR = 5.65948221575962; % Log of compressibility factor times specific gas constant
end

variables
    p = {0.1, 'MPa'}; % Pressure
    T = {300, 'K'  }; % Temperature
end

variables (Balancing=true)
    mdot = {0, 'kg/s'}; % Mass flow rate
    Phi  = {0, 'kW'  }; % Energy flow rate
end

end

The domain declaration contains the following variables and parameters:

• Across variable p (absolute pressure), in MPa
• Through variable mdot (mass flow rate), in kg/s
• Across variable T (temperature), in K
• Through variable Phi (energy flow rate), in kW
• Parameter T_min, defining the minimum allowable temperature
• Parameter T_max, defining the maximum allowable temperature
• Parameter p_min, defining the minimum allowable pressure
• Parameter p_max, defining the maximum allowable pressure
• Parameter p_atm, defining the atmospheric pressure

Parameter gas_spec provides a choice of three gas models:

• 1 — Perfect (default)
• 2 — Semiperfect
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• 3 — Real

In the Foundation Gas library, the Gas Properties (G) block serves as the source for domain parameter
values, including the selection of the gas model. For more information on propagation of domain
parameters, see “Working with Domain Parameters” on page 2-100.

The domain declaration also contains sets of parameters that define gas properties for each gas
model.

Properties for semiperfect and real gas are in the form of lookup table data. These parameter
declarations propagate to the components connected to the Gas domain, and therefore you can use
them in the tablelookup function in the component equations.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.gas.gas

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Hydraulic Domain

Note Isothermal liquid domain, introduced in R2020a, provides a more robust and flexible way of
modeling isothermal hydraulic systems.

The hydraulic domain declaration is shown below.
domain hydraulic
% Hydraulic Domain

% Copyright 2005-2013 The MathWorks, Inc.

  parameters
    density       = { 850   , 'kg/m^3' }; % Fluid density
    viscosity_kin = { 18e-6 , 'm^2/s'  }; % Kinematic viscosity
    bulk          = { 0.8e9 , 'Pa'     }; % Bulk modulus at atm. pressure and no gas
    alpha         = { 0.005 , '1'      }; % Relative amount of trapped air
  end

  variables
    p = { 0 , 'Pa' };
  end

  variables(Balancing = true)
    q = { 0 , 'm^3/s' };
  end

end

It contains the following variables and parameters:

• Across variable p (gauge pressure), in Pa
• Through variable q (volumetric flow rate), in m^3/s
• Parameter density, specifying the default fluid density
• Parameter viscosity_kin, specifying the default kinematic viscosity
• Parameter bulk, specifying the default fluid bulk modulus at atmospheric pressure and no gas
• Parameter alpha, specifying the default relative amount of trapped air in the fluid

To refer to this domain in your custom component declarations, use the following syntax:

foundation.hydraulic.hydraulic 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Isothermal Liquid Domain
The isothermal liquid domain declaration is shown below.
domain isothermal_liquid
% Isothermal Liquid Domain

% Copyright 2019 The MathWorks, Inc.

parameters
    bulk_modulus_model    = foundation.enum.bulk_modulus_model.const; % Isothermal bulk modulus model
    %                                                                   1 - const
    %                                                                   2 - linear
    air_dissolution_model = simscape.enum.onoff.off; % Air dissolution model
    %                                                  1 - on
    %                                                  0 - off
    rho_L_atm             = {998.21,    'kg/m^3'}; % Liquid density at atmospheric pressure (no entrained air)
    beta_L_atm            = {2.1791e9,  'Pa'    }; % Liquid isothermal bulk modulus at atmospheric pressure (no entrained air)
    beta_gain             = {6,         '1'     }; % Isothermal bulk modulus vs. pressure increase gain
    nu_atm                = {1.0034e-6, 'm^2/s' }; % Kinematic viscosity at atmospheric pressure
    air_fraction          = {0 ,        '1'     }; % Volumetric fraction of air that is entrained at atmospheric pressure
    rho_g_atm             = {1.225,     'kg/m^3'}; % Gas (air) density at atmospheric condition
    polytropic_index      = {1.0,       '1'     }; % Air polytropic index
    p_atm                 = {0.101325,  'MPa'   }; % Atmospheric pressure
    p_crit                = {3,         'MPa'   }; % Pressure at which all entrained air is dissolved
    p_min                 = {0.1,       'Pa'    }; % Minimum valid pressure
end

variables
    p = {0.1, 'MPa'}; % Pressure
end

variables (Balancing = true)
    mdot = {0, 'kg/s'}; % Mass flow rate
end

end

It contains the following variables and parameters:

• Across variable p (absolute pressure), in MPa
• Through variable mdot (mass flow rate), in kg/s
• Enumerated parameter bulk_modulus_model, defining the bulk modulus parametrization, with two

values:

• 0 — Bulk modulus is constant
• 1 — Bulk modulus is a function of pressure

• Enumerated parameter air_dissolution_model, defining the entrained air parametrization, with
two values:

• 0 — Entrained air is constant
• 1 — Entrained air is a function of pressure

• Parameter rho_L_atm, defining the liquid density at atmospheric pressure, with zero entrained air
• Parameter beta_L_atm, defining the liquid isothermal bulk modulus at atmospheric pressure, with

zero entrained air
• Parameter beta_gain, defining the ratio of bulk modulus to pressure increase, for when the bulk

modulus is a function of pressure
• Parameter nu_atm, defining the kinematic viscosity at atmospheric pressure
• Parameter air_fraction, defining the volumetric fraction of air that is entrained at atmospheric

pressure
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• Parameter rho_g_atm, defining the air density at atmospheric condition
• Parameter polytropic_index, defining the air polytropic index
• Parameter p_atm, defining the atmospheric pressure
• Parameter p_crit, defining the pressure at which all entrained air is dissolved, for when the

amount of entrained air is a function of pressure
• Parameter p_min, defining the minimum valid pressure

To refer to this domain in your custom component declarations, use the following syntax:

foundation.isothermal_liquid.isothermal_liquid 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Magnetic Domain
The magnetic domain declaration is shown below.
domain magnetic
% Magnetic Domain

% Copyright 2009-2013 The MathWorks, Inc.

  parameters
    mu0 = { 4*pi*1e-7 'Wb/(m*A)' };   % Permeability constant
  end

  variables
    mmf = { 0 , 'A' };
  end

  variables(Balancing = true)
    phi = { 0 , 'Wb' };
  end

end

It contains the following variables and parameters:

• Across variable mmf (magnetomotive force), in A
• Through variable phi (flux), in Wb
• Parameter mu0, specifying the permeability constant of the material

To refer to this domain in your custom component declarations, use the following syntax:

foundation.magnetic.magnetic 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Mechanical Rotational Domain
The mechanical rotational domain declaration is shown below.

domain rotational
% Mechanical Rotational Domain

% Copyright 2005-2013 The MathWorks, Inc.

  variables
    w = { 0 , 'rad/s' };
  end

  variables(Balancing = true)
    t = { 0 , 'N*m' };
  end

end

It contains the following variables:

• Across variable w (angular velocity), in rad/s
• Through variable t (torque), in N*m

To refer to this domain in your custom component declarations, use the following syntax:

foundation.mechanical.rotational.rotational 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Mechanical Translational Domain
The mechanical translational domain declaration is shown below.

domain translational
% Mechanical Translational Domain

% Copyright 2005-2013 The MathWorks, Inc.

  variables
    v = { 0 , 'm/s' };
  end

  variables(Balancing = true)
    f = { 0 , 'N' };
  end

end

It contains the following variables:

• Across variable v (velocity), in m/s
• Through variable f (force), in N

To refer to this domain in your custom component declarations, use the following syntax:

foundation.mechanical.translational.translational 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Moist Air Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+moist_air/moist_air.ssc'])

Abbreviated moist air domain declaration is shown below, with intermediate lookup table values
omitted for readability.
domain moist_air
% Moist Air Domain

% Copyright 2017 The MathWorks, Inc.

parameters
    trace_gas_model = foundation.enum.trace_gas_model.none; % Trace gas model
    %                                                         1 - none
    %                                                         2 - track_fraction
    %                                                         3 - track_properties

    R_a = {287.047, 'J/(kg*K)'}; % Dry air specific gas constant
    R_w = {461.523, 'J/(kg*K)'}; % Water vapor specific gas constant
    R_g = {188.923, 'J/(kg*K)'}; % Trace gas specific gas constant

    T_TLU = {[-56.55, -50:10:-10, -5:1:5, 10:10:350]', 'degC'}; % Temperature vector

    log_p_ws_TLU = [
        0.537480914463376
        1.37059832527040
        ...
        16.4965444877527
        16.6206369090880]; % Log of water vapor saturation pressure vector in Pa

    h_w_vap_TLU = {[
        2836.88241275372
        2837.81392500514
        ...
        1027.62017777647
        892.733785613825], 'kJ/kg'}; % Water specific enthalpy of vaporization vector

    h_a_TLU = {[
        342.416126230579
        349.005511058471
        ...
        747.258774447567
        757.813011774199], 'kJ/kg'}; % Dry air specific enthalpy vector

    h_w_TLU = {[
        2396.55944251649
        2408.68643343608
        ...
        3155.43043805905
        3175.80160435813], 'kJ/kg'}; % Water vapor specific enthalpy vector

    h_g_TLU = {[
        342.416126230579
        349.005511058471
        ...
        747.258774447567
        757.813011774199], 'kJ/kg'}; % Trace gas specific enthalpy vector

    mu_a_TLU = {[
        14.2568883320012
        14.6140127728333
        ...
        31.2307628592324
        31.5791070262086], 'uPa*s'}; % Dry air dynamic viscosity vector

    mu_w_TLU = {[
        6.81365662228272
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        7.04953750742707
        ...
        21.1317199525111
        21.4937680016671], 'uPa*s'}; % Water vapor dynamic viscosity vector

    mu_g_TLU = {[
        14.2568883320012
        14.6140127728333
        ...
        31.2307628592324
        31.5791070262086], 'uPa*s'}; % Trace gas dynamic viscosity vector

    k_a_TLU = {[
        19.8808489374933
        20.4162454629695
        ...
        46.7832370779530
        47.3667074066625], 'mW/(m*K)'}; % Dry air thermal conductivity vector

    k_w_TLU = {[
        11.4628821597600
        11.9419974889350
        ...
        43.1675775109350
        44.0380174089350], 'mW/(m*K)'}; % Water vapor thermal conductivity vector

    k_g_TLU = {[
        19.8808489374933
        20.4162454629695
        ...
        46.7832370779530
        47.3667074066625], 'mW/(m*K)'}; % Trace gas thermal conductivity vector

    cp_a_coeff = {[
        1.02664779928781
        -0.000177515573577911
        3.66581785159269e-07], 'kJ/(kg*K)'}; % Dry air specific heat polynomial coefficients

    cp_w_coeff = {[
        1.47965047747103
        0.00120021143370507
        -3.86145131678391e-07], 'kJ/(kg*K)'}; % Water vapor specific heat polynomial coefficients

    cp_g_coeff = {[
        1.02664779928781
        -0.000177515573577911
        3.66581785159269e-07], 'kJ/(kg*K)'}; % Trace gas specific heat polynomial coefficients

    Pr_a_TLU = [
        0.720986465349271
        0.719589372441350
        ...
        0.704694042255749
        0.705614770118245]; % Dry air Prandtl number pressure vector

    Pr_w_TLU = [
        1.02327757654022
        ...
        1.01351190334830
        1.01402827396757]; % Water vapor Prandtl number pressure vector

    Pr_g_TLU = [
        0.720986465349271
        0.719589372441350
        ...
        0.704694042255749
        0.705614770118245]; % Trace gas Prandtl number pressure vector

    int_dh_T_a_TLU = {[
        0
        0.0299709934765051
        ...

 Moist Air Domain

6-17



        1.05826245662507
        1.07533673877425], 'kJ/(kg*K)'}; % Dry air integral of dh/T vector

    int_dh_T_w_TLU = {[
        0
        0.0551581028022933
        ...
        1.96804836665268
        2.00100413885432], 'kJ/(kg*K)'}; % Water vapor integral of dh/T vector

    int_dh_T_g_TLU = {[
        0
        0.0299709934765051
        ...
        1.05826245662507
        1.07533673877425], 'kJ/(kg*K)'}; % Trace gas integral of dh/T vector

    D_w = {25, 'mm^2/s'}; % Water vapor diffusivity in air
    D_g = {1,  'mm^2/s'}; % Trace gas diffusivity in air

    p_min = {1,      'kPa' }; % Minimum valid pressure
    p_max = {inf,    'MPa' }; % Maximum valid pressure
    T_min = {-56.55, 'degC'}; % Minimum valid temperature
    T_max = {350,    'degC'}; % Maximum valid temperature

    p_atm = {0.101325, 'MPa' }; % Atmospheric pressure
    T_atm = {20,       'degC'}; % Atmospheric temperature

    rho_a_atm = {1.20412924943656, 'kg/m^3'   }; % Dry air density at reference condition
    cp_a_atm  = {1.00611201935459, 'kJ/(kg*K)'}; % Dry air specific heat at reference condition
    k_a_atm   = {25.8738283029331, 'mW/(m*K)' }; % Dry air thermal conductivity at reference condition
end

variables
    p   = {0.1, 'MPa'}; % Pressure
    T   = {300, 'K'  }; % Temperature
    x_w = 0;            % Specific humidity
    x_g = 0;            % Trace gas mass fraction
end

variables (Balancing=true)
    mdot   = {0, 'kg/s'}; % Mixture mass flow rate
    Phi    = {0, 'kW'  }; % Mixture energy flow rate
    mdot_w = {0, 'kg/s'}; % Water vapor mass flow rate
    mdot_g = {0, 'kg/s'}; % Trace gas mass flow rate
end

end

The domain declaration contains the following variables and parameters:

• Across variable p (absolute pressure), in MPa
• Through variable mdot (mixture mass flow rate), in kg/s
• Across variable T (temperature), in K
• Through variable Phi (mixture energy flow rate), in kW
• Across variable x_w (specific humidity), unitless
• Through variable mdot_w (water vapor mass flow rate), in kg/s
• Across variable x_g (trace gas mass fraction), unitless
• Through variable mdot_g (trace gas mass flow rate), in kg/s
• Parameter p_min, defining the minimum allowable pressure
• Parameter p_max, defining the maximum allowable pressure
• Parameter T_min, defining the minimum allowable temperature
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• Parameter T_max, defining the maximum allowable temperature
• Parameter p_atm, defining the atmospheric pressure
• Parameter T_atm, defining the atmospheric temperature

Parameter trace_gas_model provides a choice of three trace gas models:

• foundation.enum.trace_gas_model.none — None
• foundation.enum.trace_gas_model.track_fraction — Track mass fraction only
• foundation.enum.trace_gas_model.track_properties — Track mass fraction and gas

properties

In the Foundation Moist Air library, the Moist Air Properties (MA) block serves as the source for
domain parameter values, including the selection of the trace gas model. For more information on
propagation of domain parameters, see “Working with Domain Parameters” on page 2-100.

The moist air mixture is composed of three gas species. The default domain parameter values
correspond to dry air, water vapor, and carbon dioxide:

• R_a = {287.047, 'J/(kg*K)'}; % Dry air specific gas constant
• R_w = {461.523, 'J/(kg*K)'}; % Water vapor specific gas constant
• R_g = {188.923, 'J/(kg*K)'}; % Trace gas specific gas constant

You can modify these parameter values in the Moist Air Properties (MA) block to model any three-
species gas mixture.

The domain declaration also contains sets of parameters that define various dry air, water vapor, and
trace gas properties in the form of lookup table data. The table lookup is with respect to the
temperature vector, T_TLU. These parameter declarations propagate to the components connected to
the Moist Air domain, and therefore you can use them in the tablelookup function in the
component equations.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.moist_air.moist_air 

See Also
“Moist Air Source Domain” on page 6-20

More About
• “Modeling Moist Air Systems”
• “Working with Domain Parameters” on page 2-100
• “Foundation Domain Types and Directory Structure” on page 6-2
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Moist Air Source Domain
This domain is used only for connecting sources of moisture and trace gas to components with
internal moist air volume.

To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+moist_air/moist_air_source.ssc'])

Abbreviated moist air source domain declaration is shown below, with intermediate lookup table
values omitted for readability.
domain moist_air_source
% Moist Air Source Domain
% This domain is used only for connecting sources of moisture and trace gas
% to moist air components.

% Copyright 2017 The MathWorks, Inc.

parameters
    trace_gas_model = foundation.enum.trace_gas_model.track_properties; % Trace gas model
    %                                                                     1 - none
    %                                                                     2 - track_fraction
    %                                                                     3 - track_properties

    T_TLU = {[-56.55, -50:10:-10, -5:1:5, 10:10:350]', 'degC'}; % Temperature vector

    h_w_vap_TLU = {[
        2836.88241275372
        2837.81392500514
        ...
        1027.62017777647
        892.733785613825], 'kJ/kg'}; % Water specific enthalpy of vaporization vector

    h_w_TLU = {[
        2396.55944251649
        2408.68643343608
        ...
        3155.43043805905
        3175.80160435813], 'kJ/kg'}; % Water vapor specific enthalpy vector

    h_g_TLU = {[
        439.555216260064
        444.670268200251
        ...
        814.123440770426
        824.984623198037], 'kJ/kg'}; % Trace gas specific enthalpy vector

    T_min = {-56.55, 'degC'}; % Minimum valid temperature
    T_max = {350,    'degC'}; % Maximum valid temperature
    T_atm = {20,     'degC'}; % Atmospheric temperature
end

variables
    T   = {300, 'K'}; % Temperature
    x_w = 0;          % Specific humidity
    x_g = 0;          % Trace gas mass fraction
end

variables (Balancing=true)
    Phi    = {0, 'kW'  }; % Mixture energy flow rate
    mdot_w = {0, 'kg/s'}; % Water vapor mass flow rate
    mdot_g = {0, 'kg/s'}; % Trace gas mass flow rate
end

end

The domain declaration contains the following variables and parameters:
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• Across variable T (temperature), in K
• Through variable Phi (mixture energy flow rate), in kW
• Across variable x_w (specific humidity), unitless
• Through variable mdot_w (water vapor mass flow rate), in kg/s
• Across variable x_g (trace gas mass fraction), unitless
• Through variable mdot_g (trace gas mass flow rate), in kg/s
• Parameter T_min, defining the minimum allowable temperature
• Parameter T_max, defining the maximum allowable temperature
• Parameter T_atm, defining the atmospheric temperature

Parameter trace_gas_model provides a choice of three trace gas models:

• foundation.enum.trace_gas_model.none — None
• foundation.enum.trace_gas_model.track_fraction — Track mass fraction only
• foundation.enum.trace_gas_model.track_properties — Track mass fraction and gas

properties

In the Foundation Moist Air library, the Moist Air Properties (MA) block serves as the source for
domain parameter values, including the selection of the trace gas model. For more information on
propagation of domain parameters, see “Working with Domain Parameters” on page 2-100.

The domain declaration also contains sets of parameters that define water vapor and trace gas
properties in the form of lookup table data. The table lookup is with respect to the temperature
vector, T_TLU. These parameter declarations propagate to the components connected to the Moist Air
Source domain, and therefore you can use them in the tablelookup function in the component
equations.

You do not need to independently specify the water vapor and trace gas properties for the Moist Air
Source domain. The Moist Air library blocks with an S port are set up in such a way that they
propagate the properties from the regular Moist Air domain to the Moist Air Source domain
connected to their S port. This way, the water vapor and trace gas properties are consistent between
the Moist Air domain and the Moist Air Source domain.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.moist_air.moist_air_source 

See Also
“Moist Air Source Domain” on page 6-20

More About
• “Modeling Moisture and Trace Gas Levels”
• “Working with Domain Parameters” on page 2-100
• “Foundation Domain Types and Directory Structure” on page 6-2
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Thermal Domain
The thermal domain declaration is shown below.

domain thermal
% Thermal domain

% Copyright 2005-2013 The MathWorks, Inc.

  variables
    T = { 0 , 'K' };
  end

  variables(Balancing = true)
    Q = { 0 , 'J/s' };
  end

end

It contains the following variables:

• Across variable T (temperature), in kelvin
• Through variable Q (heat flow), in J/s

To refer to this domain in your custom component declarations, use the following syntax:

foundation.thermal.thermal 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Thermal Liquid Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+thermal_liquid/thermal_liquid.ssc'])

Abbreviated thermal liquid domain declaration is shown below, with intermediate lookup table values
omitted for readability.
domain thermal_liquid
% Thermal Liquid Domain

% Copyright 2012-2016 The MathWorks, Inc.

parameters (Size=variable)
    % Default liquid property tables for water
    % Rows of the tables correspond to the temperature vector
    % Columns of the tables correspond to the pressure vector

    T_TLU = {[273.1600:10:373.16]', 'K'  }; % Temperature vector
    p_TLU = {[0.01, 0.1, 5:5:50],   'MPa'}; % Pressure vector

    pT_validity_TLU = {[
        1     1     1     1     1     1     1     1     1     1     1     1
        1     1     1     1     1     1     1     1     1     1     1     1
        1     1     1     1     1     1     1     1     1     1     1     1
        1     1     1     1     1     1     1     1     1     1     1     1
        1     1     1     1     1     1     1     1     1     1     1     1
        0     1     1     1     1     1     1     1     1     1     1     1
        0     1     1     1     1     1     1     1     1     1     1     1
        0     1     1     1     1     1     1     1     1     1     1     1
        0     1     1     1     1     1     1     1     1     1     1     1
        0     1     1     1     1     1     1     1     1     1     1     1
        0     1     1     1     1     1     1     1     1     1     1     1
        ], '1'}; % Pressure-temperature validity matrix

    rho_TLU = {[
        999.8    999.8    ...     978.2     980.3
        ], 'kg/m^3'}; % Density table

    u_TLU = {[
        0.0002    0.0018  ...     407.1700  405.9800
        ], 'kJ/kg'}; % Specific internal energy table

    nu_TLU = {[
        1.7917    1.7914  ...    0.3000    0.3007
        ], 'mm^2/s'}; % Kinematic viscosity table

    cp_TLU  = {[
        4.2199    4.2194  ...    4.1245    4.1157
        ], 'kJ/(kg*K)'}; % Specific heat at constant pressure table

    k_TLU = {[
        561.0400  561.0900 ...    703.3500  706.0000
        ], 'mW/(m*K)'}; % Thermal conductivity table

    beta_TLU = {[
        1.9649    1.9654  ...    2.3455    2.3788
        ], 'GPa'}; % Isothermal bulk modulus table

    alpha_TLU = {1e-4 * [
        -0.6790   -0.6760 ...    6.8590    6.8000
        ], '1/K'}; % Isobaric thermal expansion coefficient table

    mu_TLU = {[
        1.79134166000000  ...    0.294776210000000
        ], 'cP'}; % Dynamic viscosity table

    Pr_TLU = {[
        13.4736964762477  ...    1.71842839588810
        ], '1'}; % Prandtl number table
end

parameters
    pT_region_flag   = {1,        '1'       }; % Valid pressure-temperature region parameterization
    %                                            0 - By minimum and maximum value
    %                                            1 - By validity matrix
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    T_min            = {273.16,   'K'       }; % Minimum valid temperature
    T_max            = {373.16,   'K'       }; % Maximum valid temperature
    p_min            = {0.01,     'MPa'     }; % Minimum valid pressure
    p_max            = {50,       'MPa'     }; % Maximum valid pressure
    p_atm            = {0.101325, 'MPa'     }; % Atmospheric pressure
    k_cv             = {1.43e-4,  'kg/(m*s)'}; % Ratio of thermal conductivity to specific heat
    max_aspect_ratio = {5,        '1'       }; % Maximum component aspect ratio (length/diameter) for thermal conduction
end

variables
    p = {0.1, 'MPa'}; % Pressure
    T = {300, 'K'  }; % Temperature
end

variables (Balancing=true)
    mdot = {0, 'kg/s'}; % Mass flow rate
    Phi  = {0, 'kW'  }; % Energy flow rate
end

end

It contains the following variables and parameters:

• Across variable p (absolute pressure), in MPa
• Through variable mdot (mass flow rate), in kg/s
• Across variable T (temperature), in kelvin
• Through variable Phi (energy flow rate), in kW
• Parameter pT_region_flag, defining the valid pressure-temperature region parametrization, with

two values:

• 0 — By minimum and maximum value
• 1 — By validity matrix

• Parameter T_min, defining the minimum valid temperature
• Parameter p_min, defining the minimum valid pressure
• Parameter T_max, defining the maximum valid temperature
• Parameter p_max, defining the maximum valid pressure
• Parameter p_atm, defining the atmospheric pressure
• Parameter k_cv, defining the ratio of thermal conductivity to specific heat
• Parameter max_aspect_ratio, defining the maximum component aspect ratio (length/diameter) for

thermal conduction

It also contains lookup tables, declared as variable-sized domain parameters, for the following liquid
thermodynamic properties:

• Density
• Specific internal energy
• Kinematic viscosity
• Specific heat at constant pressure
• Thermal conductivity
• Isothermal bulk modulus
• Isobaric thermal expansion coefficient
• Dynamic viscosity
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• Prandtl number

These variable-sized parameter declarations propagate to the components connected to the Thermal
Liquid domain, and therefore you can use them in the tablelookup function in the component
equations. In particular, the thermal liquid blocks in the Foundation library use these lookup tables
for interpolation purposes.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.thermal_liquid.thermal_liquid 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Two-Phase Fluid Domain
To view the complete domain source file, at the MATLAB Command prompt, type:

open([matlabroot '/toolbox/physmod/simscape/library/m/+foundation/+two_phase_fluid/two_phase_fluid.ssc'])

Abbreviated two-phase fluid domain declaration is shown below, with intermediate lookup table
values omitted for readability.
domain two_phase_fluid
% Two-Phase Fluid Domain

% Copyright 2013-2018 The MathWorks, Inc.

parameters
    p_min  = {1e-3,     'MPa'  }; % Minimum valid pressure
    p_max  = {95,       'MPa'  }; % Maximum valid pressure
    u_min  = {0,        'kJ/kg'}; % Minimum valid specific internal energy
    u_max  = {4000,     'kJ/kg'}; % Maximum valid specific internal energy
    p_crit = {22.0640,  'MPa'  }; % Critical pressure
    p_atm  = {0.101325, 'MPa'  }; % Atmospheric pressure
    q_rev  = {0.01,     'Pa'   }; % Dynamic pressure threshold for flow reversal

    transition_range = {0.1, '1'}; % Range in vapor quality for smoothing of density partial derivatives

    % Default fluid property tables for water
    % Rows of the tables correspond to the normalized internal energy vector
    % Columns of the tables correspond to the pressure vector

    unorm_TLU = {[
        -1
        -0.958333333333333
        ...
        1.95833333333333
        2
        ], '1'}; % Normalized internal energy vector

    unorm_liq_TLU = {[
        -1
        -0.958333333333333
    ...
        -0.0416666666666666
        0
        ], '1'}; % Normalized liquid internal energy vector

    unorm_vap_TLU = {[
        1
        1.04166666666667
    ...
        1.95833333333333
        2
        ], '1'}; % Normalized vapor internal energy vector

    unorm_mix_TLU = {[
        0
        0.0204081632653061
    ...
        0.979591836734694
        1
        ], '1'}; % Normalized mixture internal energy vector

    p_TLU = {[
        0.00100000000000000
        ...
        95.0000000000000
        ], 'MPa' }; % Pressure vector

    v_TLU = {[
        0.00100020732544948    ...     0.00646806895821810
        ], 'm^3/kg'}; % Specific volume table

    s_TLU = {[
        -7.05045840376749e-13    ...     6.81117017439253
        ], 'kJ/kg/K'}; % Specific entropy table

    T_TLU = {[
        273.159998291077    ...    1348.81511704704
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        ], 'K'}; % Temperature table

    nu_TLU = {[
        1.79172848157620    ...    0.361552941837863
    ], 'mm^2/s'}; % Kinematic viscosity table

    k_TLU = {[
        0.555598831086800    ...    0.250538481070411
        ], 'W/(m*K)'}; % Thermal conductivity table

    Pr_TLU = {[
        13.6057970740934    ...    0.671580102714643
        ], '1' };  % Prandtl number table

    DrhoDp_liq_TLU = {[
        0.509755264394891    ...    1.80807388692342
    ], 'kg/m^3/MPa'}; % Partial derivative of liquid density with pressure
              % at constant specific internal energy table

    DrhoDp_vap_TLU = {[
        7.36831747174794    ...    1.45923555583730
    ], 'kg/m^3/MPa'}; % Partial derivative of vapor density with pressure
              % at constant specific internal energy table

    DrhoDp_mix_TLU = {[
        1350.39031864440    ...    1.80807388692342
    ], 'kg/m^3/MPa'}; % Partial derivative of mixture density with pressure
              % at constant specific internal energy table

    DrhoDu_liq_TLU = {[
        0.0160937306771423    ...    -0.350392782066966
    ], 'kg^2/m^3/kJ'}; % Partial derivative of liquid density with specific internal energy
               % at constant pressure table
    DrhoDu_vap_TLU = {[
        -1.79894990819782e-05    ...    -0.0610611856834271
    ], 'kg^2/m^3/kJ'}; % Partial derivative of vapor density with specific internal energy
               % at constant pressure table

    DrhoDu_mix_TLU = {[
        -0.0137995431136761    ...    -0.350392782066966
    ], 'kg^2/m^3/kJ'}; % Partial derivative of mixture density with specific internal energy
               % at constant pressure table

    u_sat_liq_TLU = {[
        29.2976389515495
    ...
        2242.74587564859
        ], 'kJ/kg'}; % Saturated liquid specific internal energy vector

    u_sat_vap_TLU = {[
        2384.48887142334
    ...
    2242.74587564859
        ], 'kJ/kg'}; % Saturated vapor specific internal energy vector

end

variables
    p = { 0.1,  'MPa'   };  % Pressure
    u = { 1500, 'kJ/kg' };  % Specific internal energy
end

variables(Balancing = true)
    mdot = { 0, 'kg/s'    };  % Mass flow rate
    Phi  = { 0, 'kW'    };  % Energy flow rate
end

end

The domain declaration contains the following variables and parameters:

• Across variable p (absolute pressure), in MPa
• Through variable mdot (mass flow rate), in kg/s
• Across variable u (specific internal energy), in kJ/kg
• Through variable Phi (energy flow rate), in kW
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• Parameter p_min, defining the minimum allowable pressure
• Parameter p_max, defining the maximum allowable pressure
• Parameter u_min, defining the minimum allowable specific internal energy
• Parameter u_max, defining the maximum allowable specific internal energy
• Parameter p_crit, defining the critical pressure
• Parameter p_atm, defining the atmospheric pressure
• Parameter q_rev, defining the dynamic pressure threshold for flow reversal

It also contains lookup table data, declared as domain parameters, for the following fluid properties:

• Normalized internal energy vector
• Normalized liquid internal energy vector
• Normalized vapor internal energy vector
• Normalized mixture internal energy vector
• Pressure vector
• Specific volume table
• Specific entropy table
• Temperature table
• Kinematic viscosity table
• Thermal conductivity table
• Prandtl number table
• Partial derivative of liquid density with pressure at constant specific internal energy table
• Partial derivative of vapor density with pressure at constant specific internal energy table
• Partial derivative of mixture density with pressure at constant specific internal energy table
• Partial derivative of liquid density with specific internal energy at constant pressure table
• Partial derivative of vapor density with specific internal energy at constant pressure table
• Partial derivative of mixture density with specific internal energy at constant pressure table
• Saturated liquid specific internal energy vector
• Saturated vapor specific internal energy vector

These parameter declarations propagate to the components connected to the Two-Phase Fluid
domain, and therefore you can use them in the tablelookup function in the component equations.
In particular, the two-phase fluid blocks in the Foundation library use these lookup tables for
interpolation purposes.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.two_phase_fluid.two_phase_fluid 

See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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Pneumatic Domain

Note As of R2016b, the gas domain on page 6-6 replaces the pneumatic domain as the recommended
way of modeling pneumatic systems. The pneumatic domain definition is still provided with the
software, for compatibility reasons. However, it can be removed in a future release.

The pneumatic domain declaration is shown below.
domain pneumatic
% Pneumatic 1-D Flow Domain

% Copyright 2008-2013 The MathWorks, Inc.

  parameters
    gam = { 1.4, '1' };               % Ratio of specific heats
    c_p = { 1005 , 'J/kg/K' };        % Specific heat at constant pressure
    c_v = { 717.86 , 'J/kg/K' };      % Specific heat at constant volume
    R   = { 287.05, 'J/kg/K' };       % Specific gas constant
    viscosity = { 18.21e-6, 'Pa*s' }; % Viscosity
    Pa  = { 101325, 'Pa' };           % Ambient pressure
    Ta  = { 293.15, 'K' };            % Ambient temperature
  end

  variables
    p = { 0 , 'Pa' };
    T = { 0 , 'K' };
  end

  variables(Balancing = true)
    G = { 0 , 'kg/s' };
    Q = { 0 , 'J/s' };
  end

end

It contains the following variables and parameters:

• Across variable p (absolute pressure), in Pa
• Through variable G (mass flow rate), in kg/s
• Across variable T (temperature), in kelvin
• Through variable Q (heat flow), in J/s
• Parameter gam, defining the ratio of specific heats
• Parameter c_p, defining specific heat at constant pressure
• Parameter c_v, defining specific heat at constant volume
• Parameter R, defining specific gas constant
• Parameter viscosity, specifying the gas viscosity
• Parameter Pa, specifying the ambient pressure
• Parameter Ta, specifying the ambient temperature

These parameter values correspond to gas properties for dry air and ambient conditions of 101325 Pa
and 20 degrees Celsius.

To refer to this domain in your custom component declarations, use the following syntax:

foundation.pneumatic.pneumatic 

 Pneumatic Domain
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See Also

More About
• “Foundation Domain Types and Directory Structure” on page 6-2
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